当前位置:主页 > 科技论文 > 矿业工程论文 >

超声波激励下岩石的物理力学特征试验研究

发布时间:2018-12-07 07:21
【摘要】:随着岩石破碎工作量日益增多,进一步提高破岩效率具有重要的现实意义。目前,现有常见的破岩方法中,还大都存在材料消耗大、破岩效率低等问题,超声波具有方向性好、穿透力强、能量集中等优点,在国民经济各个领域得到了广泛的应用。本文将超声波引入到岩石破碎当中,通过理论分析与实验室试验等方式,探索超声波激励下岩石的破碎机理,以期为坚硬岩层的高效破碎提供参考。论文取得的主要成果有:(1)围绕超声波循环冲击破岩与超声波共振破岩等现象,集中讨论了超声波激励下岩石破碎机理,明确了超声波激励破岩的可行性与优越性,初步确定出频率、功率及激励时间为影响超声波激励破岩的关键影响因素。(2)设计开发出一套超声波激励岩石试验测试系统,并采用该系统测试并对比分析了不同功率、不同激励时间下岩石试件的破坏特征。结果表明:随超声波功率的不断提高,在对岩石试件施加一定的压力基础上,试件的破坏效果明显加强,超声波功率提高至3200 W左右时,标准砂岩试件迅速破坏。(3)探索了不同激励方式下岩石试件力学与强度变化特征,对比分析了超声波激励前后岩石微观结构变化特征。试验表明:(1)岩石试件强度随激励时间的提高而降低,且两者近似为线性关系;(2)在不同激励方式下,短时间内岩石试件强度均有降低,安装能量扩散器时,40 s左右,岩石试件强度下降10%左右;(3)由微观扫描得出,经超声波激励后,岩石试样内部晶核表面及侧面产生较多的裂隙,晶核也被裂隙切割成不同形状的四边形。(4)采用数值模拟的方法,系统分析了超声波频率、振幅等变化时,岩石应力、应变及剪切应力的响应特征。结果表明:(1)当频率改变时,岩石内部应力、应变、剪切应力将在某一频率时达到峰值,而在其他频率条件下,应力、应变、剪切应力变化情况较小;(2)当振幅改变时,随着振幅提高,岩石内部应力、应变、剪切应力也将不断提高,且与振幅近似为线性关系。
[Abstract]:With the increasing of rock crushing workload, it is of great practical significance to further improve the rock breaking efficiency. At present, among the common rock breaking methods, there are still many problems such as high material consumption, low rock breaking efficiency and so on. Ultrasonic wave has the advantages of good directionality, strong penetration and energy concentration, and has been widely used in various fields of the national economy. In this paper, ultrasonic wave is introduced into rock breakage. By means of theoretical analysis and laboratory test, the mechanism of rock fragmentation under ultrasonic excitation is explored in order to provide a reference for the high efficiency crushing of hard rock. The main achievements of this paper are as follows: (1) focusing on the phenomena of ultrasonic wave cyclic rock breaking and ultrasonic resonance rock breaking, the mechanism of rock breaking under ultrasonic excitation is discussed, and the feasibility and superiority of ultrasonic stimulation are clarified. The frequency, power and excitation time are the key factors affecting the rock breaking induced by ultrasonic wave. (2) A set of ultrasonic exciting rock test and testing system is developed, and the different power is tested and analyzed by using the system. Failure characteristics of rock specimens under different excitation time. The results show that with the increasing of ultrasonic power, on the basis of applying certain pressure to the rock specimen, the failure effect of the specimen is obviously strengthened, when the ultrasonic power is increased to about 3200 W, (3) the mechanical and strength characteristics of rock specimens under different excitation modes are explored, and the characteristics of rock microstructure changes before and after ultrasonic stimulation are compared and analyzed. The results show that: (1) the strength of rock specimen decreases with the increase of excitation time, and the relationship between them is approximately linear; (2) under different excitation modes, the strength of rock specimen decreases in a short time, and when energy diffuser is installed, the strength of rock specimen decreases by about 10% about 40 s; (3) from the microscopic scanning, the surface and the side of the crystal nucleus of the rock sample produced more cracks after the ultrasonic excitation, and the nucleus was also cut into quadrangles with different shapes. (4) numerical simulation method was used. The response characteristics of rock stress, strain and shear stress with the variation of ultrasonic frequency and amplitude are systematically analyzed. The results show that: (1) when the frequency changes, the stress, strain and shear stress will reach the peak value at a certain frequency, but under other frequency conditions, the variation of stress, strain and shear stress will be small; (2) with the amplitude increasing, the stress, strain and shear stress in the rock will increase continuously, and the relationship between the amplitude and the amplitude will be approximately linear.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD315

【参考文献】

相关期刊论文 前10条

1 柳贡慧;李玉梅;李军;查春青;张涛;霍明明;;复合冲击破岩钻井新技术[J];石油钻探技术;2016年05期

2 胡鸿;罗凯;王甜;王勇;梁晓丽;;超声波技术研究及其应用概况[J];中国石油和化工标准与质量;2016年12期

3 刘斌;戴玉堂;殷广林;李涛;;超声波辅助飞秒激光加工光纤材料的工艺探索[J];中国激光;2016年03期

4 张志伟;赵德智;宋官龙;张强;;超声波在石油化工领域的应用及其研究进展[J];应用化工;2016年04期

5 艾治余;朱倩倩;杨柱;王攀;;大功率超声波发生器的设计与研究[J];电子制作;2014年15期

6 何险高;王建顺;高健;;孔内超声波成像技术在地质勘察中的应用[J];工程勘察;2014年10期

7 熊卫民;;1960年的超声波化运动[J];科学文化评论;2014年03期

8 房丰洲;倪皓;宫虎;;硬脆材料的旋转超声辅助加工[J];纳米技术与精密工程;2014年03期

9 杜鹃;李占杰;宫虎;房丰洲;;硬脆材料加工诱导崩边断裂的机理分析及控制方法研究[J];机械科学与技术;2013年10期

10 苏芮;刘刚;;激光破岩机理及其影响因素分析[J];西部探矿工程;2013年09期

相关博士学位论文 前5条

1 王丹;硬脆非金属材料微结构微细加工关键技术研究[D];上海交通大学;2011年

2 洪亮;冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D];中南大学;2008年

3 郑书友;旋转超声加工机床的研制及实验研究[D];华侨大学;2008年

4 胡柳青;冲击载荷作用下岩石动态断裂过程机理研究[D];中南大学;2005年

5 赵伏军;动静载荷耦合作用下岩石破碎理论及试验研究[D];中南大学;2004年

相关硕士学位论文 前10条

1 陶祖文;井底压力条件下单齿冲击破岩实验研究[D];西南石油大学;2015年

2 张翊东;基于机电耦合法油井增产超声波换能器结构参数优化设计[D];哈尔滨工业大学;2014年

3 谢天;高频轴向液动冲击器破岩机理及试验分析[D];东北石油大学;2014年

4 李贺;新型超声波钻探器驱动特性研究[D];哈尔滨工业大学;2013年

5 李炳毅;超声波电源功率控制的研究[D];河南科技大学;2013年

6 杨康;基于超声波/声波能量耦合机理的钻探器研究[D];南京航空航天大学;2012年

7 王龙;太空超声取样钻机的设计研究[D];中国地质大学(北京);2011年

8 张善理;基于DSP的大功率数字化超声波逆变电源[D];江南大学;2011年

9 郑甲宏;大功率超声波对孔隙介质油层渗透率影响的分析[D];哈尔滨工业大学;2010年

10 翁洁知;动态匹配换能器的超声波电源控制策略[D];江南大学;2008年



本文编号:2366808

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2366808.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户e95e9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com