基于Schwarz重叠型区域分解的大地电磁二维正演研究
[Abstract]:Domain decomposition algorithm has become a powerful method to solve large scale complex numerical problems by transforming large scale problems into some small problems and greatly reducing the scale of computation and saving memory space. In this paper, the (MT) two-dimensional forward modeling of magnetotelluric method is taken as an example, the two-dimensional solution region is divided into several overlapping subdomains, the subdomains are discretized by the finite difference method and the LU direct decomposition method is used to solve them independently. Then the Schwarz alternating method is used to transfer and update the solution of overlapped region, thus the two-dimensional forward numerical simulation of magnetotelluric method is realized. Numerical simulation experiments on typical low-resistivity geoelectric models show that the proposed algorithm is accurate and feasible compared with the traditional global forward algorithm, and can greatly save computer memory and reduce CPU computing time. In addition, the study on the effect of overlapping region algorithm shows that the memory required by this algorithm decreases with the number of overlapping subfields, and the CPU computing time decreases first and then increases with the number of overlapping subfields. The combination of overlapping subdomains and the size of overlapped subdomains have a certain effect on the calculation efficiency, which need to be optimized reasonably. Therefore, the algorithm presented in this paper provides a new idea for the forward inversion of electromagnetic method for three dimensional large scale problems.
【作者单位】: 东华理工大学放射性地质与勘探技术国防重点学科实验室;
【基金】:国家青年基金项目(41404057) 国家自然科学基金项目(41164003,41674077)联合资助
【分类号】:P631.325
【相似文献】
相关期刊论文 前10条
1 ;Multisplitting and Schwarz Methods for Solving Linear Complementarity Problems[J];Numerical Mathematics A Journal of Chinese Universities(English Series);2006年04期
2 ;Laboratory named after late Prof.Uli Schwarz[J];Bulletin of the Chinese Academy of Sciences;2009年01期
3 ;A Note on Schwarz-Pick Estimate[J];Chinese Annals of Mathematics(Series B);2010年03期
4 ;Monotone Additive Schwarz Algorithms for Solving Two-Side Obstacle Problems[J];Wuhan University Journal of Natural Sciences;1996年Z1期
5 王亚红;解非线性单调问题的Schwarz算法[J];湖南大学学报(自然科学版);1997年02期
6 李宏伟;椭圆型偏微分方程的加法Schwarz方法[J];数值计算与计算机应用;2003年01期
7 曾金平,周茵;解非线性方程组的一类多重分裂加性Schwarz算法[J];湖南大学学报(自然科学版);2004年03期
8 黄小军;沈良;顾永兴;;Schwarz引理的一个注记(英文)[J];数学进展;2008年02期
9 尚月强;何银年;;Fourier analysis of Schwarz domain decomposition methods for the biharmonic equation[J];Applied Mathematics and Mechanics(English Edition);2009年09期
10 ;Schwarz-Pick estimates for positive real part holomorphic functions on unit ball and polydisc[J];Science China(Mathematics);2010年04期
相关博士学位论文 前1条
1 张晓飞;多复变数的边界型Schwarz引理及其应用[D];中国科学技术大学;2013年
相关硕士学位论文 前10条
1 黄会;二阶椭圆界面问题的两水平加性Schwarz方法[D];南京师范大学;2016年
2 查敏;二阶椭圆问题弱Galerkin方法的两水平加性Schwarz预处理算法[D];南京师范大学;2015年
3 袁鹏;两类螺线形函数的亚历山大变换的Schwarz导数范数上界估计[D];深圳大学;2017年
4 冯昊;两水平Schwarz算法[D];湖南大学;2007年
5 张利霞;Green-Schwarz弦的守恒流和解变换以及相关问题的研究[D];西北大学;2008年
6 叶玉其;一类基于Robin界面条件的加性Schwarz算法[D];湖南大学;2006年
7 黄大勇;优化施瓦兹方法综述[D];东北师范大学;2010年
8 陈玲;Circle Packing理论和一般形式Schwarz引理的推广[D];重庆大学;2011年
9 刘红梅;无界区域上的Schwarz交替法[D];合肥工业大学;2013年
10 袁广南;求解Helmholtz问题的最优Schwarz算法[D];湖南大学;2006年
,本文编号:2401602
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2401602.html