当前位置:主页 > 科技论文 > 矿业工程论文 >

深海集矿机在稀软底质土上行走动力学仿真研究

发布时间:2019-02-19 09:17
【摘要】:经过多年实践和论证,我国进行深海采矿的现行技术方案是采用水力式集矿方式,该深海采矿系统主要由水面平台、水下垂直输送系统和履带式集矿机三部分组成,而集矿机是深海采矿系统中的重要装备和核心技术单元。由于深海多金属结核矿区地形复杂多变,深海表层稀软底质土有极高的含水率、极小的内摩擦角、高液限、高塑性、大孔隙比、低强度、低重度等特性,因此需要集矿机具备良好的抗沉陷和抗打滑性能以及良好的转向和爬坡性能等,而这些性能是履带结构参数与稀软底质土耦合作用的结果。本文基于Bekker承压模型、Janosi和Hanamoto剪切模型,结合新型履带式集矿机的具体设计方案,根据深海表层稀软底质土的性能和参数,构建了适应该集矿机的稀软底质土模型;并在多体动力学软件RecurDyn中建立了履带式集矿机虚拟样机模型,分别对直线行驶、转向和爬坡等基本动作进行了动力学仿真研究。为了更好理解集矿机在稀软底质土上的动力学行为,还比较了集矿机在重粘性土上行走的特性,对比研究了集矿机在不同性质土壤中的运动学、动力学特性,评价和预测了履带式集矿机的性能。计算结果表明,1、集矿机以1m/s的速度在稀软底质土上爬坡的极限坡度是31°,而在重粘性土中能够攀爬更陡的坡,根据我国深海矿区地形地貌特征,集矿机的爬坡高度不大于15°,集矿机在稀软底质土上能顺利爬坡行驶,有良好的爬坡性能。2、静止状态下,集矿机在重粘性土和深海稀软底质土中沉陷量分别是2mm和19.51mm;当集矿机以1m/s的速度运动时,在重粘性土和深海稀软底质土中的沉陷量分别是25.89mm和33.65mm;稀软底质土中,集矿机分别以1m/s、0.6m/s和0.4m/s的速度运行时,沉陷量分别是33.65mm、35.63mm和37.88mm,在集矿机在稀软底质土上的沉陷比重粘性土中的沉陷要大,速度减小时集矿机的沉陷量有增大的趋势,集矿机在稀软底质土上的抗沉陷性能良好。3、当集矿机两侧履带速度差是0.8m/s时,集矿机在重粘性土和深海稀软底质土的转弯半径分别是4.9m和4.6m,集矿机两侧速度差越大,集矿机的转向半径越小,集矿机在稀软底质土上转向平顺。
[Abstract]:After many years of practice and demonstration, the current technical scheme of deep-sea mining in China is to adopt hydraulic mining method. The deep-sea mining system consists of three parts: surface platform, underwater vertical conveying system and crawler type ore collector. Mine collector is an important equipment and core technology unit in deep-sea mining system. Because of the complex and changeable topography of deep sea polymetallic nodule mining area, the deep sea surface soft soil has the characteristics of extremely high moisture content, minimal angle of internal friction, high liquid limit, high plasticity, large porosity ratio, low strength, low gravity and so on. Therefore, it is necessary for the collector to have good anti-subsidence and anti-skid performance, good steering and climbing performance, and these properties are the result of coupling of track structure parameters with dilute soft soil. Based on the Bekker pressure model, Janosi and Hanamoto shear model, combined with the concrete design scheme of the new crawler type collector, according to the properties and parameters of the deep sea surface thin soft soil, a thin soft soil model suitable for the mine collector is constructed. The virtual prototype model of crawler ore collector is established in the multi-body dynamics software RecurDyn, and the dynamic simulation of the basic actions such as straight line driving, steering and climbing are carried out respectively. In order to better understand the dynamic behavior of the collector on the thin soft soil, the characteristics of the collector walking on the heavy clay soil are compared, and the kinematics and dynamics characteristics of the collector in different soil properties are compared. The performance of crawler collector is evaluated and predicted. The results show that: 1, the limit slope of the mine collector climbing on the thin soft soil is 31 掳at the speed of 1m/s, but can climb the steeper slope in the heavy cohesive soil, according to the topographic and geomorphological characteristics of the deep-sea mining area in China. The climbing height of the collector is not more than 15 掳, and the collector can climb the slope smoothly on the soft soil with good climbing performance. 2. Under the static condition, the subsidence of the collector in the heavy cohesive soil and the deep sea soft soil is 2mm and 19.51 mm, respectively. When the collector moves at the speed of 1m/s, the settlement in heavy cohesive soil and deep sea soft soil is 25.89mm and 33.65 mm, respectively. In the dilute soft soil, when the collector runs at the speed of 1 m / s ~ 0.6m / s and 0.4m/s respectively, the subsidence is 33.65 mm ~ 35.63 mm and 37.88 mm, respectively. The specific gravity subsidence of ore collecting machine on the dilute soft bottom soil is large, and the subsidence amount of the ore collector with decreasing speed tends to increase, and the subsidence resistance performance of the collector on the thin soft soil is good. 3. When the velocity difference between the two sides of the collector is 0.8m/s, the turning radius of the collector is 4.9 m and 4.6 m in heavy clay and deep sea soft soil, respectively. The larger the velocity difference between the two sides of the collector is, the smaller the turning radius of the collector is. The collector turns smoothly on the soft soil.
【学位授予单位】:湘潭大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD424

【参考文献】

相关期刊论文 前10条

1 李春书;崔根群;金波;雷利梅;;基于车辆地面力学的轮式移动机器人力学模型及分析[J];河北工业大学学报;2015年04期

2 张滔;戴瑜;刘少军;陈君;黄中华;;深海履带式集矿机多体动力学建模与行走性能仿真分析[J];机械工程学报;2015年06期

3 马雯波;饶秋华;冯康;许锋;;深海稀软底质模拟土三轴压缩蠕变模型的试验研究[J];中南大学学报(自然科学版);2014年12期

4 刘相;柳波;龙紫照;高宇;;基于Bekker理论的新能源矿运车转向特性研究[J];中国机械工程;2014年24期

5 刘永刚;姚会强;于淼;任江波;杨永;;国际海底矿产资源勘查与研究进展[J];海洋信息;2014年03期

6 陶春辉;李怀明;金肖兵;周建平;吴涛;何拥华;邓显明;顾春华;张国堙;刘为勇;;西南印度洋脊的海底热液活动和硫化物勘探[J];科学通报;2014年19期

7 马雯波;饶秋华;吴鸿云;郭帅成;李鹏;;深海稀软底质土宏观性能与显微结构分析[J];岩土力学;2014年06期

8 戴瑜;刘少军;;一种新的海底履带式采矿车动力学模型建模及采集路径模拟分析[J];应用基础与工程科学学报;2014年02期

9 吕唯唯;顾亮;杨聪彬;黄雪涛;;基于车辆地面力学沙漠沙结构性本构模型的建立[J];北京理工大学学报;2013年04期

10 田小锋;姜乐华;聂晓辉;;车辆地面力学土槽试验技术研究进展[J];汽车科技;2013年02期

相关会议论文 前2条

1 杨显成;孙伯起;益其乐;;深海采矿系统运动和动力学分析计算[A];第十六届全国水动力学研讨会文集[C];2002年

2 范华林;刘福君;赵媛;;机械化路面车辆地面力学参数测试与评估方法研究[A];中国力学学会学术大会'2009论文摘要集[C];2009年



本文编号:2426359

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2426359.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户92e53***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com