当前位置:主页 > 科技论文 > 矿业工程论文 >

山体赋存煤层群混合开采覆岩破断规律及顶板控制研究

发布时间:2019-03-03 18:54
【摘要】:山体赋存煤层群开采条件下,受山体影响的原岩应力的分布特点、对原岩应力场的变化影响程度及深度,对于山体赋存煤层群的开采设计、顶板控制等具有重要的影响。此外,在煤层群混合开采条件下,多煤层开采的多重相互影响,是影响采场围岩控制、支架合理选型的关键因素。因此,研究混合开采方式下覆岩破断失稳规律、采动影响规律、应力场分布规律和覆岩裂隙场分布演化规律,提出煤层群开采过程中围岩稳定性的控制技术,对于煤层群的安全高效开采具有重要意义。采用离散元数值计算和相似材料模拟试验研究表明,松河煤矿地表在山体赋存条件下,依据山体对应力分布变化的影响程度分为三个区,即距地表100m以内的明显影响区、距地表100m~250m的影响减弱区和距地表250m以下的无影响区;3#煤层赋存深度约为400m,处于山体影响区域之外;煤层群混合开采过程中,3#、9#煤层开采覆岩破断失稳以及底板破坏程度不受临近煤层开采的影响,矿山压力显现表现为单一煤层开采矿压显现特点,而4#、6#煤层开采分别受到3#、9#煤层开采后的围岩运动的影响。采用分形几何理论,对混合开采条件下各煤层开采后顶底板破坏程度进行定量分析。研究表明,各煤层开采后的裂采比随着其下煤层的复合厚度的增大而增大,并受到煤层层间距的影响;煤层顶板裂隙的分形维数受到煤层厚度、煤层层间距、上覆岩层岩性等的影响,且随煤层复合煤层厚度的增大,裂隙的分形维数增大;通过对煤层开采后裂隙分形维数进行分析,得出4#、6#煤层的开采受临近煤层开采后的影响较大,应加强工作面顶底板的控制。基于松河煤矿煤层群赋存条件,采用离散元数值计算研究表明,3#、9#煤层开采时,工作面顶板支护设计可采用常规支护设计;4#煤层开采时,支护设计的重点是对工作面破碎顶板的控制;6#煤层开采时,工作面支护设计的重点是加强对破碎顶底板控制。根据煤层群混合开采条件下围岩的稳定性状况和覆岩结构特征,以及支架与围岩的相互作用特点,建立了上行、下行开采时支架与围岩相互作用力学模型,提出了支架支护参数的确定方法。根据3#煤层工作面矿压显现特征与工作面支架阻力的确定方法,确定了ZY6400/16/34型掩护式液压支架支护顶板;4#、6#、9#煤层平均厚度在1.2m~1.5m之间,确定选用ZY4800/09/21型液压支架支护顶板。通过现场实测3#煤层开采过程中工作面矿压显现规律可知,支架循环末阻力平均值为4446KN,时间加权阻力平均值为3904KN,和理论计算较吻合,支架具有良好的适应性,保障了3#煤层的安全开采。
[Abstract]:Under the condition of mining coal seam group in mountain body, the distribution characteristics of original rock stress affected by mountain body have important influence on the change degree and depth of original rock stress field, and on the mining design and roof control of mountain existing coal seam group. In addition, under the condition of mixed mining of coal seams, the multiple interaction of multi-seam mining is the key factor that affects the control of surrounding rock and the reasonable selection of supports in stope. Therefore, the failure and instability law of overlying rock under the mixed mining mode, the law of mining influence, the distribution of stress field and the law of distribution and evolution of overlying rock crack field are studied, and the control technology of surrounding rock stability in mining process of coal seam group is put forward. It is of great significance for the safe and efficient mining of coal seams. The numerical calculation of discrete element and the simulation experiment of similar materials show that the surface of Songhe Coal Mine is divided into three areas according to the influence degree of mountain body on stress distribution under the condition of mountain occurrence, that is, the obvious influence area within 100 m from the surface. The weakened area from the surface 100m~250m and the non-affected area below 250 m from the surface; The depth of 3 # coal seam is about 400 m, which is outside the influence area of mountain body; In the process of mixed mining of coal seams, the failure and instability of overburden rock and the failure degree of floor are not affected by the adjacent coal seam mining in 3 and 9 # coal seam mining. The behavior of mine pressure is characterized by the appearance of single coal seam mining pressure, while the mining pressure of 4? The 6 # coal seam mining is affected by the movement of surrounding rock after 3 # and 9 # coal seam mining, respectively. Based on fractal geometry theory, the failure degree of roof and floor after mining in different coal seams under mixed mining conditions is quantitatively analyzed. The results show that the ratio of fracture to mining increases with the increase of the composite thickness of the coal seam and is influenced by the interval between the coal layers. The fractal dimension of coalbed roof fractures is affected by the thickness of coal seam, the spacing of coal layers and the lithology of overlying strata, and the fractal dimension of cracks increases with the increase of the thickness of coal seam composite seam. Based on the analysis of fractal dimension of cracks after coal seam mining, it is concluded that the mining of 6 # coal seam is greatly affected by the mining of adjacent coal seam, and the control of top and floor of working face should be strengthened. Based on the existing conditions of coal seams in Songhe Coal Mine, the numerical calculation of discrete element shows that the roof support design of working face can be designed by conventional support when mining in coal seam 3 and 9. In 4 # coal seam mining, the key point of supporting design is to control the broken roof of the working face, and the key point of the supporting design of the face is to strengthen the control of the broken roof and floor in the mining of 6 # coal seam. According to the stability of surrounding rock and the characteristics of overlying rock structure and the interaction between support and surrounding rock under the condition of mixed mining in coal seams, a mechanical model of interaction between support and surrounding rock in upstream and downward mining is established. The method to determine the parameters of support is put forward. According to the characteristics of rock pressure behavior in coal face No. 3 and the determination method of face support resistance, the supporting roof of ZY6400/16/ 34 masked hydraulic support is determined. The average thickness of 9 # coal seam is between 1.2m~1.5m, and ZY4800/09/ 21 hydraulic support is selected to support roof. The results show that the average value of the end resistance of the support is 4446KN and the average value of the time weighted resistance is 3904KN, which is in good agreement with the theoretical calculation, and the support has good adaptability. The safe mining of No. 3 coal seam is guaranteed.
【学位授予单位】:中国矿业大学
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TD325;TD327.2

【相似文献】

相关期刊论文 前10条

1 范晓刚;;近距离突出煤层区域验证方法探讨[J];煤炭工程;2012年10期

2 汪长明;;具有突出危险性煤层群煤气共采技术[J];洁净煤技术;2013年01期

3 张宏伟;韩军;海立鑫;李明;乔鸿波;;近距煤层群上行开采技术研究[J];采矿与安全工程学报;2013年01期

4 薛峰;;近距离煤层群上行开采可行性研究[J];煤矿现代化;2013年01期

5 陈新胜;急倾斜煤层群上行顺序开采[J];煤矿设计;1993年03期

6 武海文;;火烧区水体下煤层群安全开采实践[J];内蒙古煤炭经济;2014年03期

7 王辉跃;;突出煤层群底板岩石抽放巷道布置研究[J];煤矿安全;2014年08期

8 翟路锁,王明立,高成春;建筑物下煤层群房柱式开采的影响因素[J];煤矿开采;2003年03期

9 王术龙;马进功;;二次扰动下煤层群上行开采可行性分析[J];山西煤炭;2011年12期

10 李青松;李绍泉;韩真理;;基于模糊聚类分析法的近距离突出煤层群突出危险程度评价[J];煤矿安全;2013年11期

相关会议论文 前7条

1 余耀峰;张仲春;杨洪滨;;近距离煤层群上行开采的研究与应用[A];矿山建设工程新进展——2007全国矿山建设学术会议文集[C];2007年

2 汪理全;;煤层群上行开采技术及应用[A];21世纪高效集约化矿井学术研讨会论文集[C];2001年

3 苏朝晖;;潘二矿煤层群开采的层位控制方法[A];2010年度淮南矿业集团煤炭学会学术交流会论文汇编(一)·地质专业[C];2010年

4 李伟;陈家祥;吴建国;;松软、低渗透煤层综合抽采技术[A];全国煤矿井下安全避险及瓦斯治理技术理论与实践[C];2011年

5 翟成;卫修君;林柏泉;;近距离煤层群采动裂隙场演化规律数值模拟研究[A];中国煤炭学会煤矿安全专业委员会2009年学术研讨会交流论文(部分)[C];2009年

6 黄祥宽;;急倾斜薄煤层群矿井瓦斯地质的特殊性研究[A];瓦斯地质研究与应用——中国煤炭学会瓦斯地质专业委员会第三次全国瓦斯地质学术研讨会[C];2003年

7 杨科;袁亮;刘钦节;廖斌琛;孙力;涂辉;;深部近距离煤层群卸压开采高应力演化煤柱效应研究[A];煤矿冲击地压防治的创新与实践——全国防治煤矿冲击地压高端论坛论文汇编[C];2013年

相关重要报纸文章 前2条

1 本报记者 裴支前;让科技成为煤矿高效安全开采的“金钥匙”[N];江淮时报;2007年

2 本报记者 牟秀源 通讯员 李帮学 彭磊;孤岛夺煤 川南罕见[N];中国煤炭报;2010年

相关博士学位论文 前7条

1 徐宏杰;贵州省薄—中厚煤层群煤层气开发地质理论与技术[D];中国矿业大学;2012年

2 季文博;近距离煤层群采动煤岩渗透特性演化规律与实测方法研究[D];中国矿业大学(北京);2013年

3 姜在炳;煤层3D动态建模技术及应用研究[D];煤炭科学研究总院;2008年

4 翟成;近距离煤层群采动裂隙场与瓦斯流动场耦合规律及防治技术研究[D];中国矿业大学;2008年

5 杨兆彪;多煤层叠置条件下的煤层气成藏作用[D];中国矿业大学;2011年

6 胡永忠;山体赋存煤层群混合开采覆岩破断规律及顶板控制研究[D];中国矿业大学;2015年

7 李庆军;近距离煤层群开采煤层自燃预测研究[D];西安科技大学;2010年

相关硕士学位论文 前10条

1 章照明;火成岩侵入煤层瓦斯涌出规律研究[D];安徽理工大学;2008年

2 陈敬轶;成庄煤矿瓦斯地质图编制与煤层气资源量评价[D];河南理工大学;2007年

3 陈彦军;复杂围岩条件极近距离薄煤层群开采相关技术研究[D];山东科技大学;2010年

4 任硕;超临界CO_2在低渗透煤层渗流规律研究[D];辽宁工程技术大学;2013年

5 陈绍祥;极近距离下位煤层采准巷道优化布置及支护研究[D];内蒙古科技大学;2015年

6 吴敏;新安煤矿深部构造煤采动区煤层气开发方案对比研究[D];中国地质大学;2013年

7 乔大良;近水平多煤层开拓模式的优化研究[D];内蒙古科技大学;2010年

8 丁红;多分层煤层井下水力压裂裂缝起裂规律研究[D];重庆大学;2014年

9 黄飞;薄及中厚近距离煤层群垮落法上行开采研究[D];安徽理工大学;2013年

10 冯辉;贺西煤矿首采层开采后下伏煤层卸压特征研究[D];中国矿业大学;2015年



本文编号:2434003

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/kuangye/2434003.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户34c6f***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com