基于支持向量机的黄土矿区最大下沉预计模型
[Abstract]:Coal mining causes surface subsidence deformation, in which the maximum subsidence value is one of the key indexes to measure the surface subsidence deformation. The factors such as mining depth, mining height, coal seam inclination, overburden hardness, working face tendency and strike length have an important influence on the maximum subsidence value in the mining subsidence. The influence of the thickness and characteristics of loess soil layer should be taken into account in the maximum subsidence value of loess mining area. There is a complex nonlinear relationship between these factors and the maximum subsidence of the earth surface. The existing models of the maximum subsidence prediction function can not accurately reflect the complex nonlinear characteristics, so the prediction accuracy and the scope of application have great limitations. Support vector machines (SVM) can map the dimension of sample space to a feature space with high dimension by kernel function, and turn the complex nonlinear problem into a linear problem. Support vector machine (SVM) also has the penalty mechanism to eliminate the gross error data automatically, which ensures the accuracy and reliability of the model, and can provide an effective means for establishing the maximum subsidence prediction model of loess mining area in this paper. In this paper, according to the principle and characteristics of support vector machine, the construction steps of the maximum subsidence prediction model are summarized. According to this step, the penalty parameters and kernel function parameters of the model are determined by means of cross-validation. Then the optimal sample is selected by iterative method. The model is trained to determine the number of support vectors and the coefficients of the predicted model. Finally, the support vector machine regression model is constructed. According to the modeling flow, the visual program is developed based on the script language of MATLAB platform, which realizes the encapsulation of model training and application process, and provides users with simple and easy-to-understand interface form. The support vector machine regression model is compared with the existing maximum subsidence prediction model. It is found that the accuracy and reliability of the support vector machine regression model is better than other function models. In order to reveal the variation rule of the model variables, the relationship between the input variables and the maximum subsidence value is studied by taking the different values of the input variables respectively. The results show that the sensitivity of the maximum subsidence value to the three input variables, mining height, rock hardness and coal seam inclination, is higher than that of other variables. In addition, it is found that the ratio of width to depth and the ratio of soil thickness to depth are less than 0.3 and 0.35, respectively, for the samples with high prediction accuracy and large prediction deviation. On the contrary, the aspect-depth ratio and soil-thickness ratio of the samples with high accuracy are at least 0.4 脳 0.5. The support vector machine regression model constructed in this paper can be used for quantitative prediction of the maximum subsidence value of the loess mining area, and has a certain value of popularization and application.
【学位授予单位】:西安科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD327
【参考文献】
相关期刊论文 前10条
1 余学义;郭文彬;赵兵朝;刘樟荣;;巨厚黄土层宽条带开采地表移动规律及参数优化[J];煤炭科学技术;2016年04期
2 朱伟;滕永海;郑志刚;;厚黄土下综放高强度开采地表沉陷与覆岩破坏实测[J];金属矿山;2015年04期
3 刘义新;廉玉广;李少刚;;采动影响下厚黄土层沉陷规律研究[J];金属矿山;2015年04期
4 郑志刚;戴华阳;;厚黄土区大采高一次采全高地表移动变形规律[J];金属矿山;2015年04期
5 尹光志;李铭辉;李文璞;曹偈;李星;;基于改进BP神经网络的煤体瓦斯渗透率预测模型[J];煤炭学报;2013年07期
6 靳海霞;白中科;周伟;王金满;李帅;;黄土丘陵区井工煤矿损毁耕地复垦费用研究及实证[J];资源与产业;2013年03期
7 张彦宾;柴华彬;邹友峰;李德海;尹士献;;厚黄土覆盖层滑坡区建筑物下条带开采稳定性分析[J];能源技术与管理;2012年01期
8 汤伏全;;西部厚黄土层矿区开采沉陷预计模型[J];煤炭学报;2011年S1期
9 司刚全;曹晖;张彦斌;贾立新;;一种基于密度加权的最小二乘支持向量机稀疏化算法[J];西安交通大学学报;2009年10期
10 徐乃忠;戴华阳;;厚松散层条件下开采沉陷规律及控制研究现状[J];煤矿安全;2008年11期
相关博士学位论文 前2条
1 郝兵元;厚黄土薄基岩煤层开采岩移及土壤质量变异规律的研究[D];太原理工大学;2009年
2 孙德山;支持向量机分类与回归方法研究[D];中南大学;2004年
相关硕士学位论文 前6条
1 于俊钊;孪生支持向量机及其优化方法研究[D];中国矿业大学;2014年
2 代巨鹏;西北厚松散层矿区开采沉陷预计与可视化研究[D];西安科技大学;2011年
3 戴开文;厚黄土层开采地表沉陷灾害及其控制研究[D];西安科技大学;2010年
4 孟媛媛;模糊支持向量机的研究与应用[D];山东师范大学;2006年
5 邵小健;支持向量机中若干优化算法研究[D];山东科技大学;2005年
6 辛宪会;支持向量机理论、算法与实现[D];中国人民解放军信息工程大学;2005年
,本文编号:2440017
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2440017.html