崩落体形态模型建立与数值模拟
[Abstract]:The method of sublevel caving without pillar is widely used in metal iron mines at home and abroad because of its advantages such as high mining intensity and production safety. However, this mining method is used in overlying rock mining and ore drawing, and the mining method has been widely used in metal iron mines both at home and abroad. The problem of loss and dilution has not been solved very well. Caving body is an ore pile formed in loose overlying rock after blasting by explosive ore body, and it is the object of ore drawing. Its shape has a great influence on ore loss and dilution, but it is difficult to observe the shape of caving body which occurs in overlying strata. There is also no way to determine its shape. Determining the shape of caving body has important theoretical and practical value for optimizing stope structural parameters, reducing ore loss and dilution, and improving mine economic benefit. On the basis of ore drawing theory, loose medium theory, minimum energy dissipation principle and dissipative structure theory, this paper analyzes the formation mechanism of avalanche body, establishes the mathematical model of caving body, and determines the shape of caving body. The MATLAB program is compiled to calculate the shape of caving body with different structure parameters, and the shape of caving body under different stope structure parameters is simulated by PFC2D software, and the shape of caving body under different stope structure parameters is simulated by PFC2D software. The effect of the shape of caving body on ore loss and dilution was tested in laboratory with an automatic single ore drawing system. The following results have been achieved: 1. Based on ore drawing theory, loose medium theory, minimum energy dissipation principle and dissipative structure theory, it is concluded that the caving body is an ellipsoid deficiency similar to that of loose body. The mathematical model of the caving body is established, and the solution method and steps of the shape of the caving body are determined. On this basis, the MATLAB program is compiled to calculate the shape of the caving body under different structural parameters. The calculated results accord with the actual situation of the mine. 3. PFC2D software is used to simulate the shape of caving body under different stope structure parameters. The simulation results are in good agreement with the calculated results of the model, and the feasibility of the caving body shape model is verified. 4. With the aid of the automatic single ore drawing system, the laboratory ore drawing experiment is carried out by using the different structure parameters of the model, and the experimental results show that when the section height is 18m, the distance between the approaches is 20m, When the ore step distance is 3m, the ore loss and dilution is the lowest, and the shape of the caving body is the best. This study is of guiding significance for optimizing structural parameters and reducing ore loss in mines with sublevel caving without bottom column.
【学位授予单位】:辽宁科技大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD853.362
【参考文献】
中国期刊全文数据库 前10条
1 曾春娜;王贺军;李冉;熊小林;;两类特殊椭球缺的体积与表面积[J];西南师范大学学报(自然科学版);2015年06期
2 张婧婧;;基于MATLAB的正弦稳态电路仿真[J];西昌学院学报(自然科学版);2014年04期
3 董爱民;蒋国盛;;土体颗粒破裂过程离散元模拟的新方法[J];科学技术与工程;2014年25期
4 王红;袁鸿;夏晓舟;章青;;基于最小耗能原理的塑性应变流动法则[J];上海大学学报(自然科学版);2012年04期
5 张国建;翟会超;;无底柱分段崩落法放出体、松动体、崩落体三者关系模型[J];中国矿业;2010年03期
6 杜娟;;二维颗粒流程序PFC~(2D)特点及其应用现状综述[J];安徽建筑工业学院学报(自然科学版);2009年05期
7 罗迎社;唐松花;周筑宝;;最小耗能原理及其在塑性力学中的应用[J];广西大学学报(自然科学版);2009年02期
8 朱志根;吴爱祥;;崩落矿石块度对放矿的影响分析[J];矿业快报;2006年10期
9 唐松花;罗迎社;周筑宝;王智超;;最小功耗原理的有限元法[J];湘潭大学自然科学学报;2006年03期
10 朱焕春;;PFC及其在矿山崩落开采研究中的应用[J];岩石力学与工程学报;2006年09期
中国重要会议论文全文数据库 前1条
1 邱战洪;张我华;舒小乐;应冬柏;李磊;柯云斌;俞静;;用最小耗能原理表达的粘-弹-塑性损伤理论[A];第一届全国水工岩石力学学术会议论文集[C];2005年
中国博士学位论文全文数据库 前1条
1 张洪伟;基于离散元方法的橡胶颗粒沥青混合料疲劳性能与破冰机理研究[D];长安大学;2012年
中国硕士学位论文全文数据库 前9条
1 谭宝会;锦宁矿业缓倾斜矿体无底柱分段崩落法合理回采工艺研究[D];西南科技大学;2014年
2 李红霞;基于径向基函数配点法的北京平原区地下水数值模拟[D];辽宁师范大学;2014年
3 李彬;武钢程潮铁矿采场放矿规律及放矿步距优化研究[D];武汉科技大学;2012年
4 计国贤;正常固结砂性土在循环剪切作用下变形特性的颗粒流模拟[D];浙江工业大学;2010年
5 张春阳;散体矿岩移动规律模拟及高粘矿岩助流研究[D];中南大学;2009年
6 李莉;室内悬浮颗粒物浓度与粒度图像识别算法的研究[D];武汉理工大学;2008年
7 于晓;光散射颗粒物浓度测量仪特征参数的标定方法研究[D];南京理工大学;2007年
8 项一凡;综放开采顶煤三维仿真模型的研究及应用[D];安徽理工大学;2007年
9 张慎河;放矿理论及其检验[D];西安建筑科技大学;2001年
,本文编号:2448749
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2448749.html