基于SAR技术的矿区大梯度形变时序监测
[Abstract]:Mining subsidence in mining area is different from other surface deformation, which has the characteristics of complex geological conditions, special geographical environment, rapid settlement and intense settlement. In recent years, InSAR technology has been widely used in urban surface deformation, earthquake, glacier movement and other fields, but it is limited by the principle of the technology itself. Its application effect in large gradient deformation areas such as mining subsidence is not satisfactory. Therefore, this paper is devoted to taking the Offset-tracking technology in the field of SAR as the core, through some improvements and combining with the traditional D-InSAR technology in the technical principle level, to improve the monitoring ability and accuracy of SAR technology in mining area. The main contents of this paper are as follows: (1) the research status and theoretical principle of SAR technology are summarized and analyzed, and the research status of D-InSAR technology, SBAS technology, Offset-tracking technology and mining subsidence parameter inversion are introduced respectively. The advantages and disadvantages of the above technical methods are pointed out. At the same time, the basic principle of D-InSAR differential interferometric measurement technology and Offset-tracking offset tracking technology is introduced. The limitations of the monitoring ability of the traditional differential interferometric technology are analyzed. (2) based on the analysis of the error model of Offset-tracking technology, the registration method based on query list is used to improve the registration accuracy. Then the systematic error of the technique is removed by Quadric surface fitting, and the processing method of offset tracking technology is improved. To a certain extent, the improved method weakens the influence of related errors in Offset-tracking technology. It provides precision guarantee for further time series processing. (3) in view of the advantages of traditional D-InSAR method in monitoring small deformation and the strong detection ability of Offset-tracking technology in large gradient deformation monitoring, The final deformation phase is obtained by using the principal value superposition of deformation phase obtained by D-InSAR technique and the whole cycle number of deformation phase obtained by Offset-tracking technique, and the timing offset tracking technology based on phase fusion is constructed. On this basis, the SBAS small baseline set strategy is used to solve the time series in order to reduce the error caused by the temporal and spatial baseline. (4) on the basis of monitoring the settlement value of the mining area by SAR technology, Firstly, a series of mining subsidence parameters, such as the angle value and the main influence radius of the surface subsidence basin, are extracted, and the probability integral prediction parameters of the mining face are calculated according to the empirical formula. Furthermore, combined with the traditional mining subsidence theory and adding mathematical methods, the inversion and prediction of mining subsidence parameters are carried out, which ensures the accuracy of real-time prediction of mining subsidence and provides a technical method for real-time prediction of mining subsidence.
【学位授予单位】:中国矿业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD325.4
【参考文献】
相关期刊论文 前10条
1 杨俊凯;陈炳乾;邓喀中;何强;赵伟颖;;基于D-InSAR与概率积分法的开采沉陷监测与预计[J];金属矿山;2015年04期
2 杨俊凯;范洪冬;赵伟颖;冯军;;基于D-InSAR技术和灰色Verhulst模型的矿区沉降监测与预计[J];金属矿山;2015年03期
3 陈炳乾;邓喀中;范洪冬;;基于D-InSAR技术和SVR算法的开采沉陷监测与预计[J];中国矿业大学学报;2014年05期
4 阎跃观;戴华阳;葛林林;郭俊廷;AlexHay-ManNG;李晓静;;基于DInSAR监测的动态地表移动变形数值模拟分析(英文)[J];Transactions of Nonferrous Metals Society of China;2014年04期
5 范洪冬;顾伟;秦勇;薛继群;陈炳乾;;基于D-InSAR和概率积分法的矿区大变形地表沉降提取方法(英文)[J];Transactions of Nonferrous Metals Society of China;2014年04期
6 Chen Bingqian;Deng Kazhong;Fan Hongdong;Hao Ming;;Large-scale deformation monitoring in mining area by D-InSAR and 3D laser scanning technology integration[J];International Journal of Mining Science and Technology;2013年04期
7 卞和方;杨化超;张书毕;;概率积分法预计参数的智能优化选择方法研究[J];采矿与安全工程学报;2013年03期
8 李佳;李志伟;汪长城;朱建军;丁晓利;;SAR偏移量跟踪技术估计天山南依内里切克冰川运动[J];地球物理学报;2013年04期
9 王正帅;邓喀中;康建荣;;概率积分法参数反演的文化-随机粒子群优化算法[J];辽宁工程技术大学学报(自然科学版);2013年03期
10 周大伟;吴侃;刁鑫鹏;陈冉丽;赵鑫;张静;;测量误差对概率积分法参数精度影响[J];辽宁工程技术大学学报(自然科学版);2013年03期
相关博士学位论文 前6条
1 朱煜峰;矿区地面沉降的InSAR监测及参数反演[D];中南大学;2013年
2 俞晓莹;改进的SBAS地表形变监测及地下水应用研究[D];中南大学;2012年
3 盛耀彬;基于时序SAR影像的地下资源开采导致的地表形变监测方法与应用[D];中国矿业大学;2011年
4 范洪冬;InSAR若干关键算法及其在地表沉降监测中的应用研究[D];中国矿业大学;2010年
5 阎跃观;DInSAR监测地表沉陷数据处理理论与应用技术研究[D];中国矿业大学(北京);2010年
6 何姣云;矿山采动灾害监测及控制技术研究[D];武汉理工大学;2007年
相关硕士学位论文 前5条
1 宋云帆;联合干涉测量和像素偏移量估计提取大形变梯度地表位移[D];西南交通大学;2016年
2 姚丹丹;基于偏移追踪法的D-InSAR矿区形变监测技术[D];中国矿业大学;2016年
3 杨俊凯;面向矿区大梯度形变监测的SAR信息提取方法研究[D];中国矿业大学;2016年
4 林昊;基于D-InSAR和Offset Tracking技术的滑坡形变场提取研究[D];中国地质大学(北京);2014年
5 蒋弥;D-InSAR可检测的最大最小形变梯度的函数模型研究[D];中南大学;2008年
,本文编号:2486432
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2486432.html