炼焦中煤解离规律与浮选工艺研究
[Abstract]:The low-ash and fine coal is selected from the middle coal sorted by the coking coal, so that it can be used for smelting the coke, which not only is beneficial to the protection of the scarce coal resources in China, but also to promote the development of our national economy. According to the "Different interface sorting methods are suitable for different particle size", the selective flocculation and conventional flotation are used to study the re-selection of the coal after grinding. The sieving and floating tests show that the content of the coal in the-3mm size fraction is not big, the coal quality is more uniform, the average ash content is only 27.30%, the caking index of the coal in the-3mm size fraction is only 18.00%, and only the separation can be used for coking and the need for re-selection. The cumulative yield of the + 1.40-1.80 g/ cm ~ 3 density is up to 81.79%, which indicates that the minerals in the coal sample are closely related to the organic components, and the effective sorting can only be achieved by crushing and grinding. The characteristics of the coal in the-3mm size fraction show that the kaolinite is the main mineral, but a certain amount of pyrite, quartz and calcite are also present. Most of the clay minerals are disseminated in the cell cavity and the matrix with a particle size of about 4 m, and it is difficult to achieve complete dissociation. The grinding test shows that, when the grinding time is 5 min, the fraction content of-0.074mm has reached 84.59%, which is suitable for coarse grinding; when the grinding time is 30 min, the fine grinding efficiency is high, the content of the material entering the-0.038mm size is close to 100.00%, and the content of-0.010 mm is about 81.85%. When the ore is ground for 2 min, the ash of-0.038 mm and-0.010 mm all reach the minimum value, and the organic combustible components in the medium coal are preferentially dissociated. The grinding fineness is-0.074 mm54.66% (corresponding to the grinding time of 2 min) and-0.010 mm86.81% (corresponding to the grinding time of 40 min). When the ash content was 12.00%, the separation density was not increased, and only 0.033 g/ cm ~ 3 was raised. The grinding fineness is-0.074 mm54.66% and-0.010 mm861.81% of the surface-scanning electron microscope-energy spectrum analysis show that when the grinding fineness is-0.074 mm54.66%, the clay mineral and the organic component are still co-exist in a continuous mode. And a large amount of monomer-dissociated mineral particles and organic coal-rock monomer particles are present in the-0.010 mm size fraction. When the fineness of the grinding is-0.010 mm81.81%, the fine-grained grade is more than 50 m. After the ultrasonic dispersion, it can be observed that the mineral particles are completely dissociated from the organic combustible. The contact angle of the grinding minerals shows that the contact angle increases with the degree of dissociation, and the maximum value is 83.1 掳 (grinding fineness-0.074 mm6.7.32% (the corresponding grinding time is 3 min), at which time the surface hydrophobicity of the particles is the strongest). When the grinding fineness exceeds-0.010 mm81.85%, the mineral particles adhere to the surface of the coal particles, and the fine coal contact angle is relatively low and the fluctuation is not large. The conventional flotation test shows that the ash content of the fine coal is still higher than 15.60%, which is caused by the fine mud pollution, even when the amount of the low-dose agent (the amount of the collecting agent is 100 g/ t and the foaming agent is 50 g/ t). The optimum grinding fineness of the no-agent flotation is-0.074-35%, but due to the insufficient dissociation, the recovery of the fine coal is less than 14.00%. The optimum grinding fineness of the conventional flotation is-0.074 mm54.66-67.32%. When the grinding fineness is-0.074 mm0.66% (the corresponding grinding time is 2 min), the qualified fine coal with the yield of about 35-38% can be recovered by the rough selection + selection process. The selective flocculation and flotation test shows that both the flocculant and the dispersant are favorable to the separation effect, and the flocculant is superior to the dispersant. -0.010 mm81.85-86.81% of the best grinding fineness for selective flocculation and flotation recovery. When the grinding fineness is-0.010 mm81.81%, the recoverable yield is 43.44%, and the ash content is 11.93%, and the quantity index of the flotation refined coal is 85.09%. the coarse grinding-coarse selection process is used for treating the coal in the coking and sorting, not only has higher separation number and quality efficiency, but also can greatly reduce the grinding energy consumption and the flotation drug consumption, and simultaneously can avoid the interference of the flotation defoaming and the reduction of the subsequent filtration and dehydration problem, The results show that the coarse-fine-fine-fine flotation is the most suitable for coking.
【学位授予单位】:太原理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TD94;TD923
【相似文献】
相关期刊论文 前10条
1 侯英;丁亚卓;印万忠;姚金;;磨矿动力学参数对磨矿速度的影响[J];东北大学学报(自然科学版);2013年05期
2 贾培祥;用回归议程预测磨矿细度[J];化工矿山技术;1988年04期
3 马少健,陈建新;磨矿优化研究述评[J];矿山机械;2000年04期
4 赵承河;一段二闭路磨矿工艺在万庄金矿的应用实践[J];黄金;2003年02期
5 段希祥,周平;强化针对性磨矿——当代磨矿领域中的重要原则[J];昆明理工大学学报(理工版);2004年04期
6 肖庆飞;石贵明;段希祥;;云锡锡铜共生矿二、三段磨矿中钢球尺寸的选择[J];矿冶工程;2006年06期
7 陈广华;;磨矿工艺调试生产实践[J];黄金;2007年09期
8 郭永杰;罗春梅;曾桂忠;段希祥;;非标准、高细度两段磨矿的介质优化试验研究[J];矿产综合利用;2008年06期
9 曾桂忠;罗春梅;段希祥;;优化非标准磨矿流程磨矿效果的应用研究[J];昆明理工大学学报(理工版);2008年03期
10 徐忠敏;庄宇凯;冯金敏;崔秋华;杨永文;;高硫铁矿中金氰化过程中磨矿细度研究[J];中国矿山工程;2008年04期
相关会议论文 前10条
1 肖庆飞;段希祥;;磨矿机械的性能分析及发展趋势[A];2005年全国选矿高效节能技术及设备学术研讨与成果推广交流会论文集[C];2005年
2 曾雪平;;磨矿细度对樟东坑矿区九龙脑西部矿石回收率影响的生产实践[A];复杂难处理矿石选矿技术——全国选矿学术会议论文集[C];2009年
3 李健;张伟;张晓煜;;提高选矿厂磨矿质量的探讨[A];第十八届川鲁冀晋琼粤辽七省矿业学术交流会论文集[C];2011年
4 张治元;王宇斌;孙盈;;微阶段化磨矿工艺因素分析[A];第十届全国粉体工程学术会暨相关设备、产品交流会论文专辑[C];2004年
5 肖庆飞;罗春梅;段希祥;王晶;;选择性磨矿的进展及应用[A];2010'中国矿业科技大会论文集[C];2010年
6 王一达;;铀矿水冶中磨矿设备应用及选型[A];全国铀矿大基地建设学术研讨会论文集(下)[C];2012年
7 何晓明;苏兴国;;齐大山选矿厂二次磨矿工艺优化研究[A];鲁冀晋琼粤川辽七省金属(冶金)学会第十九届矿山学术交流会论文集(选矿技术卷)[C];2012年
8 张磊;李茂林;崔瑞;汪彬;朱晔;曾凡霞;;GN型高能磨机磨矿性能的试验研究[A];2009中国选矿技术高峰论坛暨设备展示会论文[C];2009年
9 于涛;;一段闭路磨矿分级旋流器与分级机的工业实践[A];第五届全国矿山采选技术进展报告会论文集[C];2006年
10 崔瑞;李茂林;张磊;汪彬;朱晔;曾凡霞;;GN型高能磨机基本性能研究[A];2009中国选矿技术高峰论坛暨设备展示会论文[C];2009年
相关重要报纸文章 前4条
1 韩信合;青春在镍都闪光[N];中国有色金属报;2007年
2 马秀勤 吴向东;多碎少磨助生产上台阶[N];中国黄金报;2010年
3 特约记者 海波 通讯员 红玲;华隆选矿公司实现首季开门红[N];中国矿业报;2007年
4 本报记者 刘纪生;如何有效降低矿业成本?[N];中国冶金报;2010年
相关博士学位论文 前10条
1 侯英;钼铜矿石的高压辊碎磨特性和浮选分离研究[D];东北大学;2014年
2 肖庆飞;两段磨矿精确化装补球方法的开发及应用研究[D];昆明理工大学;2008年
3 胡天喜;立式同轴离心磨机磨矿理论与试验研究[D];昆明理工大学;2008年
4 叶贤东;超临速磨矿理论研究[D];昆明理工大学;2002年
5 谢恒星;湿式磨矿中钢球磨损机理与磨损规律数学模型的研究[D];中南大学;2002年
6 郭永杰;非标准两段球磨磨矿流程实施精确化装补球方法的应用研究[D];昆明理工大学;2009年
7 杜茂华;一段磨矿精确化装补球方法开发及其破碎机理分析和应用效果研究[D];昆明理工大学;2007年
8 马天雨;铝土矿连续磨矿过程建模与优化控制研究[D];中南大学;2012年
9 石贵明;降低镍铜混合精矿氧化镁含量的新工艺研究[D];昆明理工大学;2008年
10 卢毅屏;铝土矿选择性磨矿—聚团浮选脱硅研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 刘瑜;柿竹园多金属矿1500吨/日选矿厂磨矿过程优化试验研究[D];江西理工大学;2015年
2 乔鹏升;鲕状赤铁矿深度还原产品选矿工艺研究[D];东北大学;2014年
3 张振柱;鑫源矿业黄金尾矿分离长石试验研究[D];辽宁工程技术大学;2015年
4 孙大勇;武平含铜银多金属矿高压辊碎磨-浮选技术研究[D];东北大学;2013年
5 程旭;一种新型异形介质对磨矿效果的影响研究[D];东北大学;2014年
6 周意超;异形介质对钨矿选择性磨矿行为的研究[D];江西理工大学;2016年
7 邹春林;梅山铁矿磨矿—分级工艺过程优化试验研究[D];江西理工大学;2015年
8 杨昊;利用银山矿半自磨顽石做立磨机介质的磨矿试验研究[D];江西理工大学;2015年
9 王亚彬;提高太平掌铜矿磨矿细度研究[D];昆明理工大学;2012年
10 王宇斌;微阶段化磨矿技术研究[D];西安建筑科技大学;2005年
,本文编号:2486989
本文链接:https://www.wllwen.com/kejilunwen/kuangye/2486989.html