K型偏心支撑在混凝土—钢框架结构中的应用
发布时间:2018-04-03 22:30
本文选题:偏心支撑 切入点:窑尾塔架 出处:《武汉理工大学》2013年硕士论文
【摘要】:近年来,随着钢结构的飞速发展,钢结构建筑抗震设计成为设计人员面临的一个重要问题。偏心支撑框架既具有传统中心支撑框架的刚度,又有传统抗弯框架的延性和能量耗散能力,耗能梁段屈服能吸收和耗散强烈地震作用时过多的能量,从而减小地震对结构造成的危害,同时还能有效节约15%~30%的钢材。偏心支撑结构在美国和日本的高地震烈度区使用较多。 K型偏心支撑作为混凝土-钢框架窑尾塔架的抗侧力体系,是一种新型的理想框架支撑体系。本文在前人研究的理论基础上,以实际窑尾工程项目为背景,利用大型通用有限元分析软件ANSYS,研究K型偏心支撑混凝土-钢框架窑尾塔架的抗震性能。本文的主要研究内容如下: 1、建立窑尾塔架有限元模型。窑尾是一个平面尺寸小、总高及层高大、荷载大且空间结构比较复杂的结构,在建模阶段做了简化工作,分别建立了中心支撑与不同梁段长度的偏心支撑的窑尾塔架模型。 2、采用静力分析、模态分析、反应谱分析和时程分析等方法对中心支撑窑尾塔架与偏心支撑窑尾塔架进行有限元分析,研究水平地震作用下的动力反应及抗震性能分析。反应谱分析比较了中心支撑模型和不同耗能梁段长度的偏心支撑模型在设防烈度为8度的多遇地震作用下地震响应,包括水平位移、柱底轴力、支撑轴力和等效应力。时程分析比较了中心支撑模型和不同耗能梁段长度的偏心支撑模型在设防烈度为8度的多遇地震和罕遇地震下的地震响应,包括水平位移、柱底轴力、支撑轴力和等效应力。 3、对支撑与梁之间的不同连接构造、不同支撑截面形式进行了模态分析和时程分析的对比。梁柱连接节点对结构有着相当重要的作用,连接节点的形式与性质对框架整体受力性能有着直接的影响作用。框架结构的内力和位移不仅受梁柱连接刚度的大小的影响,而且结构构件的稳定与其有着密切联系。故本文分别用梁单元和杆单元来模拟支撑,采用时程分析比较了中心支撑模型和偏心支撑模型在设防烈度为8度的罕遇地震下的地震响应,包括水平位移、柱底轴力、支撑轴力和等效应力,分析两种单元情况下支撑的减震效果有无差异。
[Abstract]:In recent years, with the rapid development of steel structures, seismic design of steel structures has become an important problem faced by designers.Eccentrically braced frame not only has the stiffness of traditional center-braced frame, but also has the ductility and energy dissipation ability of traditional flexural frame.Thus, the damage caused by earthquake to the structure is reduced, and the steel is saved by 15% and 30%.Eccentrically braced structures are widely used in high seismic intensity areas of the United States and Japan.K eccentricity bracing is a new type of ideal frame bracing system, which is used as the lateral force resisting system of concrete-steel frame kiln tower.In this paper, based on the theory of previous studies, the seismic behavior of K-type eccentrically braced concrete-steel frame kiln tail tower is studied by using the large-scale general finite element analysis software ANSYS. based on the actual kiln tail engineering project.The main contents of this paper are as follows:1. The finite element model of kiln tail tower is established.The kiln tail is a structure with small plane size, total height and tall story, large load and complicated spatial structure. In the modeling stage, simplified work has been done, and the tower model of center support and eccentric support with different beam length has been established respectively.2. The static analysis, modal analysis, response spectrum analysis and time-history analysis are used to analyze the dynamic response and seismic behavior of the central supported kiln tail tower and the eccentric supporting kiln tail tower.Response spectrum analysis is used to compare the seismic responses of the central bracing model and the eccentric bracing model with different energy dissipation beam lengths under the action of frequent earthquakes with a fortification intensity of 8 degrees, including horizontal displacement, column bottom axial force, bracing axial force and equivalent stress.The seismic responses of central bracing model and eccentrically braced model with different energy dissipation beam lengths are analyzed and compared, including horizontal displacement, column bottom axial force, bracing axial force and equivalent stress.3. The modal analysis and time history analysis are carried out to compare the different connections between the bracing and the beam, as well as the different cross-section forms of the braces.Liang Zhu connection joint plays a very important role in the structure, and the form and nature of the connection joint have a direct impact on the overall mechanical behavior of the frame.The internal force and displacement of frame structure are affected not only by the stiffness of Liang Zhu connection, but also by the stability of structural members.In this paper, the beam element and the bar element are used to simulate the support, and the seismic response of the center support model and the eccentric bracing model under the rare earthquake with fortification intensity of 8 degrees are compared by time history analysis, including horizontal displacement, axial force at the bottom of the column.The axial force and the equivalent stress of the support are analyzed, and the difference of the shock absorption effect between the two kinds of elements is analyzed.
【学位授予单位】:武汉理工大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:TU398.9
【参考文献】
相关期刊论文 前10条
1 魏文晖,瞿伟廉,陈朝晖;粘弹性阻尼器对建筑结构非线性地震反应的控制[J];地震工程与工程振动;1999年04期
2 欧进萍,吴斌,,龙旭;耗能减振结构的抗震设计方法[J];地震工程与工程振动;1998年02期
3 管克俭,王新武,彭少民;钢框架支撑体系的应用和分析方法[J];中国工程科学;2003年05期
4 钱稼茹;陈茂盛;张天申;王明弹;;偏心支撑钢框架拟动力地震反应试验研究[J];工程抗震;1992年01期
5 申永康;万斌;邵建华;;偏心支撑钢框架延性抗震设计探讨[J];工程抗震与加固改造;2007年02期
6 李钢;李宏男;;位移型消能减震偏心结构Pushover能力谱简化计算方法[J];工程力学;2008年03期
7 田凯;肖亚明;;高层建筑偏心支撑钢框架在地震作用下的动力分析[J];工程与建设;2006年03期
8 赵根田;万馨;王珊;刘爱廉;;耗能梁段长度对K形偏心支撑钢框架抗震性能的影响[J];钢结构;2007年05期
9 陈小峰;邓开国;郝际平;;偏心支撑钢框架能力设计方法研究[J];钢结构;2010年03期
10 李新华,舒赣平;偏心支撑钢框架的设计探讨[J];工业建筑;2001年08期
相关硕士学位论文 前2条
1 张帆;水泥厂窑尾结构体系的性能与设计研究[D];河海大学;2004年
2 舒磊;高层偏心支撑钢框架的优化设计[D];西南交通大学;2004年
本文编号:1707173
本文链接:https://www.wllwen.com/kejilunwen/sgjslw/1707173.html