天然气水合物转移装置压力维持系统研究
本文关键词:天然气水合物转移装置压力维持系统研究 出处:《浙江大学》2016年硕士论文 论文类型:学位论文
更多相关文章: 天然气水合物 深海 压力维持 保压转移 AMESim
【摘要】:天然气水合物是近年发现于海底沉积物及冻土带中,由于其储藏量大、能量高被视作新型能源,可用作传统原料如石油、煤炭的替代品。天然气水合物稳定存在于一定的低温高压条件下,利用现有保压取样技术,将开采岩心保压提升到海面后,进一步转移到实验室的过程中,由于缺少保压转移装置,其中含有的天然气水合物组分会分解,造成对其性质测量的困难。目前,国内在天然气水合物保压取样技术方面有较多研究,但是,如何将取样器中的沉积物样品保压从海面切割并转移至实验室中以进一步研究,则研究的较少。本文旨在提出一套压力维持解决方案,用于天然气水合物转移装置。全文共分为六章。第一章,首先介绍了深海取样及天然气水合物研究的背景知识,然后分析了国内外在天然气水合物取样技术、保压转移技术的研究进展,由于国内尚无天然气水合物保压转移方案,亟需保压转移设备的研制,借此提出本课题研究的目的、意义和主要内容。第二章,简要介绍了天然气水合物保压转移装置的系统组成及工作原理,为设计压力维持系统提供了依据。然后分析比较了常见的几种压力维持方式,结合转移装置的需求,提出了压力维持系统的总体方案。第三章,涉及到压力维持系统关键液压元件的选用研究。根据总体方案,重点研究、推导了蓄能器的数学模型,分析了蓄能器工作参数对吸收压力冲击、脉动的影响。第四章,基于AMESim软件对压力维持系统性能进行研究。首先用AMESim软件对压力维持系统进行建模,分析保压转移全过程中压力的波动情况。随后分析蓄能器预充压力、体积,管路的内径、长短等因素对压力维持的影响。第五章,利用前述结果搭建压力维持系统样机,进行元件选用研究,并分阶段进行实验测试。首先进行压力维持系统的打压能力测试,再应用于保压转移装置上,验证该压力维持系统的可行性。第六章,总结与展望
[Abstract]:Natural gas hydrate is found in marine sediments and permafrost zone in recent years. Because of its large storage capacity and high energy, gas hydrate is regarded as a new energy source, and can be used as a substitute for traditional raw materials such as petroleum and coal. The gas hydrate stability in low temperature and high pressure conditions, the use of existing pressure sampling technology, the mining pressure to core surface, further transfer to the laboratory process, due to the lack of pressure transfer device, wherein the gas hydrate containing the decomposition, due to the nature of the difficulty of measuring. At present, there are many researches on gas hydrate retention sampling technology in China, but how to keep the sediment samples from the sea surface and transfer to the laboratory for further research is relatively limited. The purpose of this paper is to propose a set of pressure maintenance solutions for the gas hydrate transfer device. The full text is divided into six chapters. The first chapter, first introduced the research of natural gas hydrate in deep sea sampling and background knowledge, and then analyzes the domestic and foreign natural gas hydrate sampling technology, and research progress of pressure transfer technology, because of the lack of domestic natural gas hydrate pressure transfer scheme, developed to the pressure transfer device, and puts forward the research purpose, significance and the main content. In the second chapter, the system composition and working principle of the gas hydrate pressure transfer device are briefly introduced, which provides the basis for the design of pressure maintenance system. Then analysis and comparison of several common pressure maintenance methods, combined with the needs of the transfer device, put forward the overall plan of the pressure maintenance system. The third chapter deals with the selection of key hydraulic components in the pressure maintenance system. According to the overall plan, the mathematical model of the accumulator is studied and deduced, and the influence of the working parameters of the accumulator on the shock and pulsation of the absorption pressure is analyzed. In the fourth chapter, the performance of pressure maintenance system is studied based on AMESim software. First, the AMESim software is used to model the pressure maintenance system, and the pressure fluctuation in the whole process of pressure protection transfer is analyzed. Then the influence of the pressure, volume, inner diameter and length of the pipe on the pressure maintenance is analyzed. In the fifth chapter, the prototype of pressure maintenance system is built with the above results, and the selection of components is studied, and the experimental test is carried out in stages. First, the pressure testing of the pressure maintenance system is tested, and then applied to the pressure transfer device to verify the feasibility of the pressure maintenance system. The sixth chapter, summary and Prospect
【学位授予单位】:浙江大学
【学位级别】:硕士
【学位授予年份】:2016
【分类号】:TE96
【参考文献】
相关期刊论文 前10条
1 刘润强;王娜;王海艳;;常见的几种保压回路分析及其故障排除[J];科协论坛(下半月);2013年09期
2 杨钢;仇艳凯;李宝仁;李罡;;考虑进口特性的蓄能器吸收压力脉动动态特性研究[J];液压与气动;2012年04期
3 何海洋;俞科云;陈国琳;黄亚农;;蓄能器—泵系统压力缓冲仿真与试验[J];舰船科学技术;2011年07期
4 戴金岭;许俊良;宋淑玲;王永禄;陈玉国;;天然气水合物钻探取样技术现状与实施研究[J];西部探矿工程;2011年01期
5 白玉湖;李清平;;天然气水合物取样技术及装置进展[J];石油钻探技术;2010年06期
6 李永平;赵生秀;蒲继才;郑凯;杨小泽;;保压密闭取心技术在台6-28井的应用[J];青海石油;2009年04期
7 秦华伟;陈鹰;顾临怡;李世伦;陶军;耿雪樵;;海底沉积物保真采样技术研究进展[J];热带海洋学报;2009年04期
8 张凌;蒋国盛;宁伏龙;吴翔;窦斌;涂运中;;国外天然气水合物岩心处理分析技术综述[J];地质科技情报;2009年01期
9 张永勤;孙建华;赵海涛;刘秀美;王汉宝;;天然气水合物保真取样钻具的试验研究[J];探矿工程(岩土钻掘工程);2007年09期
10 权凌霄;孔祥东;高英杰;康双琦;姚静;;不考虑进口特性的蓄能器吸收冲击理论及试验[J];机械工程学报;2007年09期
相关博士学位论文 前1条
1 秦华伟;海底表层样品低扰动取样原理及保真技术研究[D];浙江大学;2005年
相关硕士学位论文 前2条
1 金学良;基于AMESim的液压抗冲击系统设计与仿真[D];哈尔滨工业大学;2011年
2 李峰;深海沉积物无扰动保压取样技术的研究[D];浙江大学;2008年
,本文编号:1337879
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1337879.html