天然气处理厂脱重烃系统工艺优化
本文关键词:天然气处理厂脱重烃系统工艺优化 出处:《西安石油大学》2015年硕士论文 论文类型:学位论文
【摘要】:天然气作为清洁能源,在我国发展起步虽然较晚,但发展势头猛劲,随着社会对天然气需求量的不断增加,更需要开发和应用先进的天然气处理工艺方法。不管是油气田开采的伴生气和非伴生气等只涉及“浅脱”的脱水脱烃,还是生产液化天然气(LNG)等的深度净化,都要根据处理精度要求和处理装置规模,结合各种脱水脱烃方法的特点及实际进行经济和技术比较,选择出最为合适的技术工艺。C5+以上重烃组分虽然在天然气中占很少比重,但在天然气液化工艺中若脱出不彻底,会在液化低温段堵塞换热器流道而使冷箱冻堵,降低了液化率、能耗增加,冻堵严重时会导致装置停车。本文基于某日处理量为200万方的天然气液化项目,对其深度脱重烃技术进行一系列的基础研究,为LNG装置中的天然气深度净化提供理论基础及技术支持。天然气液化厂脱重烃常用吸附法、深冷分离和溶剂洗涤法。本文结合吸附脱重烃原理分析比较了不同吸附剂对重烃组分的脱附性能,并分析A厂预处理单元脱酸脱水过程中的烃损失;对气质数据进行采样分析,分析流程中冷箱冻堵原因,并比较冷箱冻堵与不冻堵时换热器换热性能,针对本项目中所用双循环混合制冷液化流程,用HYSYS软件进行模拟,建立混合制冷剂循环中压缩机、板翅式换热器、节流阀等设备的数学模型,计算稳态模拟结果;限定液化产品量,在给定约束条件下根据冷剂能耗最小来优化冷剂配比及脱重烃“中点”温度;根据系统能耗最小和液化产品产量最大两种模式,给定约束条件,对工艺流程进行参数优化,通过对预冷温度和工艺参数的优化,以使在同等负荷和天然气处理量下流程性能运行最佳,降低冷箱冻堵的可能性。最后针对A厂因增加负荷时脱重烃能力不足的缺陷,需增加脱重烃装置,文中第五段提出几种改进的脱重烃方案,根据A厂实际,根据可靠性、合理性的选择原则,从经济性、使用性等方面进行比较,选出较合理的方案,为A厂需增加的脱重烃工艺提供理论指导。
[Abstract]:Natural gas as a clean energy development in China started late, but the development momentum is fierce, with the increasing social demand for natural gas, natural gas processing method to the development and application of advanced. Whether the oil and gas exploration associated gas and non associated gas only relates to "light off" dewatering hydrocarbon, or the production of liquefied natural gas (LNG) and the depth of purification, according to the processing accuracy and processing device size, and the actual characteristics of dehydration and dealkylation method combined with a variety of economic and technical comparison, choose the most suitable technology more than.C5+ while heavy hydrocarbon in natural gas accounted for a small proportion but, in the natural gas liquefaction process if the extrusion is not complete, in the low temperature liquefied section block heat exchanger channel and the cold box freezing, reduce the liquefaction rate, energy consumption increases, freezing will lead to serious parking device based. In one day to supply liquefied natural gas project 2 million, the depth of heavy hydrocarbon removal technology based on a series of research, provide theoretical basis and technical support for natural gas purification device. The depth of LNG natural gas liquefaction plant and heavy hydrocarbon commonly used adsorption, cryogenic separation and solvent washing method in this paper. Adsorption removal of heavy hydrocarbon analysis principle comparison of different adsorbents for heavy hydrocarbon desorption performance points, and analyze the pretreatment unit of A plant acid dehydration process of hydrocarbon loss; sampling and analysis of data analysis in the process of temperament, cold box freezing, and cold box freezing and freezing time heat exchanger performance for double cycle used in this project in the mixed refrigerant liquefaction process was simulated by the HYSYS software, establish the compressor mixed refrigerant cycle, plate fin heat exchanger, mathematical model of throttle valve and other equipment, the calculation of steady state simulation results; limit Fixed amount of liquefaction products, under the given constraint condition according to the minimum energy consumption to optimize the refrigerant refrigerant ratio and heavy hydrocarbon removal "point" temperature; system according to the minimum energy consumption and liquefaction products yield the largest two modes, given constraints, to optimize the process, through the optimization of pre cooling temperature and process parameters, in order to make under the same load and gas handling capacity process performance best, reduce the possibility of cold box freezing. According to the defects of A plant due to increased load when the heavy hydrocarbon removal ability, increase the heavy hydrocarbon removal device, the fifth section in this paper put forward some improved scheme of heavy hydrocarbon removal, according to the actual situation of A factory. According to the selection principle of reliability, rationality, from the economy, compared with other, choose a reasonable plan for A factory need to increase the heavy hydrocarbon removal process to provide theoretical guidance.
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE644
【参考文献】
相关期刊论文 前9条
1 汤明;肖泽仪;史晓燕;;膜技术在含烃类气体分离中的研究及前景[J];过滤与分离;2005年04期
2 张林松;杨光;赵万鹏;陈荣清;;天然气液化厂站脱汞的探讨[J];煤气与热力;2008年08期
3 尚静;;利用膨胀制冷技术脱水脱烃的实验研究[J];辽宁化工;2014年10期
4 张建平;;液化天然气中次要杂质的脱除及液化工艺研究[J];科技视界;2014年31期
5 张明;王春升;;超音速分离管技术在海上平台的应用分析[J];石油与天然气化工;2012年01期
6 钟志良;汪宏伟;白宇恒;孙林;;LNG工厂冷箱堵塞问题解决方案研究[J];天然气与石油;2013年05期
7 郑智伟;袁清;吴锐;;某天然气液化工艺冷箱积液分析及排除[J];石油与天然气化工;2014年04期
8 曾凡平;田广新;;液化天然气工厂重烃脱除工艺方案比选[J];石油与天然气化工;2015年01期
9 李时宣,冯凯生,张明礼;天然气小压差节流制冷脱烃工艺技术[J];油气田地面工程;2005年07期
相关博士学位论文 前1条
1 王伟平;大型冷箱内换热器及其配管系统的流体均配与传热优化研究[D];浙江大学;2014年
相关硕士学位论文 前4条
1 孙海波;吸附法分离天然气中的轻烃[D];天津大学;2010年
2 王丽贤;天然气浅冷装置参数运行优化技术研究[D];大庆石油学院;2007年
3 杨焕丽;吸附法脱除天然气中C_5~+重烃的研究[D];天津大学;2009年
4 高伟;降低分子筛吸烃损失技术研究[D];吉林大学;2014年
,本文编号:1419309
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1419309.html