普通稠油氧化反应特征研究
本文关键词:普通稠油氧化反应特征研究 出处:《华南理工大学》2015年硕士论文 论文类型:学位论文
【摘要】:稠油是石油资源的重要组成部分,随着石油资源的短缺以及稠油开采技术的日臻成熟,稠油油藏的勘探开采越来越受到重视。火烧油层技术是稠油开采技术中最高效、最经济的开采技术,但其中涉及到的难点较多。了解稠油的氧化特性对于火烧油层技术的应用至关重要,而稠油的氧化特性与火驱时的温度场、注气量、燃烧速率等诸多参数有关。本论文以河油田杜66块原油为对象,研究稠油的氧化反应特性,为火烧油层技术的实施提供基础数据和理论依据。本文采用静态高温高压反应系统,在低温(90℃)和高温(300℃)、不同含氧量气氛等条件下对稠油及其轻、中、重质馏分进行氧化反应实验,通过记录反应过程中温度、压力变化以及利用综合热分析、红外光谱、族组分、元素分析、物理化学性质检测、气相色谱分析等方法对氧化反应前后稠油及其各馏分和尾气进行表征,得到以下结论:该区块稠油中饱和烃含量为29.78%,芳香烃含量为28.13%,胶质含量为35.68%及沥青质含量较高为6.14%。由稠油热重分析结果可知,稠油氧化过程分为三个阶段:低温氧化反应(LTO)、燃料沉积(FD)和高温氧化反应(HTO)。稠油的失重率为91.4%,自燃点为376℃。在不同温度及氧气含量不同的气氛中对稠油进行氧化反应,结果表明:氧化反应后稠油的密度增加,粘度也大幅增加,随着温度和氧气浓度的增加,粘度由2635m Pa·s(50℃)增加到7330 m Pa·s(50℃);饱和烃含量由29.78%减少到14.98%,芳香烃含量由28.13%较少到21.37%,胶质含量由35.68%增加到49.29%、沥青质含量由6.41%增加到14.36%。本文将稠油进行分馏得到轻、中、重馏分,并在不同温度和不同氧气含量气氛中对稠油及轻、中、重馏分进行氧化实验,研究结果表明,轻质油氧化反应生成少量胶质,中质油氧化后饱和烃芳香烃减少,胶质含量增加,并且有一定量的沥青质生成。重质油氧化后沥青质的含量明显增加。氧化温度较低时,主要是芳香烃发生氧化反应,生成胶质,随着温度升高,饱和烃发生氧化生成胶质;而胶质则氧化生成沥青质;当达到燃点温度,各组分开始燃烧并放出大量的热,其中重质组分的放热量最大。通过对稠油氧化反应动力学的研究表明,稠油燃烧起始段活化能最高477.42k J/mol,低温氧化段活化能最低7.61k J/mol,经过氧化反应后,油品低温氧化段的活化能有所增加,燃料沉积段和燃烧段的活化能减小。
[Abstract]:Heavy oil is an important part of petroleum resources, with the shortage of petroleum resources and heavy oil production technology has matured, the exploration and exploitation of heavy oil reservoir has attracted more and more attention. In situ combustion technology is the heavy oil recovery technology in the most efficient, the most economical mining technology, which involves many difficulties. To understand the oxidation characteristics of heavy oil for application critical combustion technology, and temperature field, fire and heavy oil oxidation characteristics of gas injection flooding, burning rate and other parameters. In this paper, the river block Du 66 crude oil as the object, oxidation characteristics of heavy oil, provide the basic data and theoretical basis for the implementation of in situ combustion technology. This paper uses the static high temperature and high pressure reaction system at low temperature (90 DEG C) and high temperature (300 DEG C), different oxygen atmosphere under the condition of heavy oil and light, heavy fraction in oxidation experiment, The temperature record in the reaction process, the pressure change and the use of thermal analysis, infrared spectroscopy, elemental analysis, composition, physical and chemical properties detection, gas chromatography and other methods were used to characterize the oxidation reaction of heavy oil and its fractions before and after and exhaust, get the following conclusion: the content of saturated hydrocarbon block of heavy oil was 29.78%. The aromatic hydrocarbon content is 28.13%, the resin content is 35.68% and the asphaltene content was 6.14%. higher by heavy oil thermal analysis results show that the heavy oil oxidation process is divided into three stages: low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation reaction (HTO). The oil loss rate was 91.4% for spontaneous combustion, 376. C for oxidation reaction of heavy oil in different temperature and oxygen content in different atmosphere results show that after the oxidation of heavy oil density increased, viscosity also increased, with the increase of temperature and oxygen concentration, viscosity by 2635 M Pa s (50 DEG C) increased to 7330 m Pa s (50 DEG C); the saturated hydrocarbon content decreased from 29.78% to 14.98%, the aromatic hydrocarbon content from 28.13% to 21.37% less, pectin content increased from 35.68% to 49.29%, the asphaltene content increased from 6.41% to 14.36%. in the heavy oil fractionating light. The heavy fraction, and in the different temperature and oxygen content in the atmosphere of heavy oil and light, heavy fraction of oxidation experiments, the results show that the oxidation reaction of light oil to generate a small amount of colloid, intermediate oxidation of saturated hydrocarbon and aromatic hydrocarbon decreased, pectin content increased, asphaltene and generate a certain amount of heavy oil oxidation. Asphaltene content increased significantly. The oxidation temperature is low, mainly aromatic hydrocarbon oxidation reaction, formation of glial, with the increasing of temperature, saturated hydrocarbon oxidized resin; and microglia were oxidized to asphaltene; when reaching the ignition temperature of the components to start Burn and release a lot of heat, heat the heavy which was the largest. Through the research on heavy oil oxidation kinetics show that the activation energy of heavy oil burning the initial segment of the highest 477.42k J/mol low temperature oxidation period of activation energy of the lowest 7.61k J/mol, after the oxidation reaction, activation of oil low temperature oxidation section can increase fuel deposition and the combustion activation energy decreases.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE345
【参考文献】
相关期刊论文 前10条
1 吴一尘;;辽河油区中深层稠油油藏火驱开采可行性研究[J];中国石油和化工标准与质量;2011年04期
2 程月;张悫;袁鉴;张锁兵;路遥;陈兴娟;;低温氧化对原油组成的影响[J];化学研究;2007年01期
3 桂玢;王艳芳;张鑫;吴会觉;路遥;;原油空气氧化前后多环芳烃组分的气相色谱-质谱分析[J];化学研究;2010年03期
4 鲍鹏程;韩晓强;马月琴;路遥;黄晓义;武立斌;刘方方;;重度原油注空气低温氧化过程研究(英文)[J];化学研究;2013年04期
5 张永刚;罗懿;刘岳龙;魏开鹏;杨欢;;红河油田轻质原油低温氧化实验及动力学研究[J];油气藏评价与开发;2013年06期
6 李少池,沈燮泉,王艳辉;火烧油层物理模拟的研究[J];石油勘探与开发;1997年02期
7 王杰祥,张琪,李爱山,张红玲,刘均荣,张红;注空气驱油室内实验研究[J];石油大学学报(自然科学版);2003年04期
8 林日亿;任旭虎;谢志勤;李淑兰;;火烧开发现场动态跟踪分析[J];中国石油大学学报(自然科学版);2012年01期
9 张宗源,谢志勤;胜利油田火烧油层先导性试验研究[J];石油钻采工艺;1996年03期
10 刘慧卿,李景梅,赵鹏,陈大众;热力采油井现代试井分析方法研究[J];石油钻探技术;2003年04期
相关硕士学位论文 前1条
1 朱文兵;火烧驱燃烧动力学与裂解热分析实验研究[D];华中科技大学;2009年
,本文编号:1426978
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1426978.html