当前位置:主页 > 科技论文 > 石油论文 >

基于总体局域均值分解及稀疏表示分类的天然气管道泄漏孔径识别

发布时间:2018-01-20 13:13

  本文关键词: 泄漏孔径识别 总体局域均值分解(ELMD) KL散度 稀疏表示分类器 过完备字典 出处:《中国机械工程》2017年10期  论文类型:期刊论文


【摘要】:针对天然气管道泄漏受孔径、传感器距离、管道内压力等多种因素影响,特征提取及识别算法较为复杂的问题,提出了基于总体局域均值分解-相对熵的特征提取算法并结合稀疏表示分类的泄漏孔径识别新方法。该方法采用总体局域均值分解方法对泄漏信号进行自适应分解,得到不同孔径泄漏信号的特征信息,并根据KL散度选择包含主要泄漏信息的PF分量,在此基础上提取多种时频特征参数,获取全面准确表征泄漏信号的特征向量;针对小样本复杂信号的分类,提出稀疏表示分类器实现泄漏孔径准确分类。该分类器采用过完备字典求得测试信号的最稀疏解,并以此解作为测试信号的稀疏重构系数,以获取测试信号在不同类别中的重构信号,最终通过判断测试信号与重构信号的残差值大小完成泄漏孔径分类。实验结果表明,所提出的算法比传统的SVM及BP分类算法识别准确率高。
[Abstract]:The gas pipeline leakage is affected by many factors, such as aperture, sensor distance, pipeline pressure and so on, so the algorithm of feature extraction and identification is more complex. In this paper, a new method of leak aperture identification based on local mean decomposition and relative entropy is proposed, which combines with sparse representation classification. The method uses the local mean decomposition method to self-adaptively divide the leakage signal. Solution. The characteristic information of different aperture leakage signal is obtained, and the PF component which contains the main leakage information is selected according to the KL divergence. On this basis, a variety of time-frequency characteristic parameters are extracted. Obtain the characteristic vector which can represent the leakage signal completely and accurately; For the classification of small sample complex signals, a sparse representation classifier is proposed to realize accurate classification of leak aperture, which uses an overcomplete dictionary to obtain the most sparse solution of the test signal. The solution is used as the sparse reconstruction coefficient of the test signal to obtain the reconstructed signal of the test signal in different classes. Finally, the leak aperture classification is completed by judging the residual value of the test signal and the reconstructed signal. The experimental results show that the proposed algorithm is more accurate than the traditional SVM and BP classification algorithms.
【作者单位】: 燕山大学信息科学与工程学院;燕山大学河北省测试计量技术及仪器重点实验室;中国石油天然气管道通信电力工程有限公司;
【基金】:国家自然科学基金资助项目(51204145) 河北省自然科学基金资助项目(E2013203300,E2016203223)
【分类号】:TE973.6
【正文快照】: 0引言天然气管道泄漏会造成严重后果,微小泄漏是燃气管道发生燃爆的主要诱因,泄漏孔径的不同直接与危险程度相关,当传感系统检测到管道发生泄漏后,尽快估计出不同泄漏孔径,是快速制定管道抢修计划、评估泄漏尺度的重要基础,对燃气管道的泄漏及识别具有重要意义。天然气管道泄

【相似文献】

相关期刊论文 前3条

1 程文波;王华军;;信号稀疏表示的研究及应用[J];西南石油大学学报(自然科学版);2008年05期

2 蒋璐璐;骆美富;张瑜;余心杰;孔汶汶;刘飞;;汽车自动变速箱油的近红外光谱识别研究[J];光谱学与光谱分析;2014年01期

3 ;[J];;年期



本文编号:1448311

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1448311.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户2c90c***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com