微球乳液性能测试及高温高压驱替实验
发布时间:2018-02-11 08:55
本文关键词: 微球乳液 性能测试 机理研究 油藏适应性 参数优化 出处:《长江大学》2015年硕士论文 论文类型:学位论文
【摘要】:文25东块属高温、高矿化度、高钙镁、强非均质油藏。其调剖增产主力油层为开发条件较好的一类和二类储层,该储层目前已进入特高含水期。为综合提高特高含水期油藏的采收率,中原油田开发了复配低张力表面活性剂的凝胶微球乳液驱油体系。该体系可以综合发挥各组成部分在“调”和“驱”方面的贡献,是一种高性能的驱油体系。微球乳液性能测试是通过激光粒度仪、扫描电镜观测体系中微球粒径、粒径分布随外部条件变化的规律。其测试结果表明,聚合物微球随着溶胀时间增大,先迅速膨胀然后膨胀减缓,近30天内膨胀到几百纳米并且比较稳定;膨胀倍数在10倍以上;微球粒径具有较好的耐盐性和耐温性。从微观、横向单管非均质和二维平板3个方面验证微球乳液驱油机理,其驱油机理为:聚合物微球是一个弹性球体,粒径小,遇水膨胀,依靠架桥和膨胀作用在地层孔喉处进行堵塞,当大尺寸微球形成架桥后,较小尺寸的微球在架桥形成的小孔道上进行嵌入和堵塞,依靠聚合物微球的弹性和塑性,发生强有力的拉筋作用,加强了楔塞的机械强度,形成牢固的移动困难的的塞状垫层,达到封堵的目的,从而实现注入水微观改向,与此同时,随着注入微球量增多,微球之间发生膨胀和挤压,缓慢流入孔道,并可以“清除”少量剩余油,当微球超过其弹性形变后,随着注入水流出,随着重复循环作用,通过暂堵、变形、运移、再暂堵、再变形、再运移等不断重复过程的机理起调驱作用,因此微球具有“注得进、堵得住、能移动”的特点。微球乳液的油藏适应性研究从不同体系、非均质性以及非均质与均质对比实验等3各方面展开,对比单注微球、单注表活剂、低张力微球乳液体系、微球与表活剂交替注入的注入性和驱油效率,而采用微球乳液和表活剂1:1交替注入采收率增值最高,因此,采用微球乳液和表活剂1:1交替注入体系更适应于现场油藏。与此同时,非均质采用1:1.1、1:1.5、1:2.5、1:4、1:6等5个渗透率极差的双管模型实验来研究油藏非均质性,结果表明,在渗透率极差较小时,聚合物微球乳液体系主要以“调”为主,“驱”为辅的方式;而在渗透率极差不断增大,驱油方式有向“驱”为主“调”为辅的方式转变。将非均质微小、小、中、大、极大等极差双管驱油实验与均质条件300mD、500mD、800mD单管驱油实验进行对比,结果表明,该微球乳液更适应于非均质油藏。为了方便注入参数的优化,首先确定注剂后老化时间,分别对比老化12h、24h、48h等3个老化时间的注入性和驱油效率,结果确定老化24h为最佳注剂后老化时间:段塞优选从段塞注入量(O.3PV,0.5PV,0.7PV,1PV)和段塞组合(聚合物微球和表活剂比例为1:1、2:1、1:2、1:1:1:1)两方面进行优选,结果表明,采用段塞注入量0.5PV和段塞比组合为为1:1为最佳段塞;对比4种注入速度(0.3ml/min、 0.5ml/min、1ml/min、2ml/min)进行驱油实验,结果表明采用0.5ml/min为最佳注入速度;在最佳段塞、速度条件下,改变流度控制剂(微球)浓度(0.3%、0.5%、0.7%),表活剂浓度0.3%不变1:1交替注,结果表明,使用0.5%微球为最佳微球乳液注入浓度。
[Abstract]:Wen 25 east block is a high temperature, high salinity, high calcium and magnesium, strong heterogeneous reservoir. The main reservoir for the production profile better developed a class and two types of reservoir, the reservoir has entered extra high water cut period. For EOR in high water cut stage reservoir, gel microsphere emulsion the development of Zhongyuan Oilfield was low tension surfactant flooding system. This system can combine each component in the "modification" and "drive" contribution, is a kind of high performance oil displacement system. The performance of microsphere emulsion testing by laser particle size analyzer, scanning electron microscope observation system in particle size. The law of particle size distribution changes with the external conditions. The test results show that the polymer microspheres with swelling time increasing, the rapid expansion and expansion to slow down, nearly 30 days expanded to several hundred nanometers and relatively stable; the expansion ratio of more than 10 times; micro particle size Has good salt resistance and temperature resistance. From the microscopic, single transverse heterogeneity and plane 3 aspects to verify the microsphere emulsion flooding mechanism, the flooding mechanism is that polymer microspheres is an elastic sphere, small particle size, water swelling, congestion and expansion depend on bridging role in the formation of pore throat where, when large size microspheres were formed after the bridge, the small size of the microspheres in bridging the formation of small hole embedding and blocking, depending on the polymer microspheres of elastic and plastic, has strong reinforcement effect, enhance the mechanical strength of the wedge, the formation of strong hard plug cushion, reach closure in order to achieve the objective, the injected water micro change direction, at the same time, with the injection of microspheres increased, expansion and extrusion occurred between the microspheres, slowly flow into the channel, and can be "clear" a small amount of residual oil, more than its elastic deformation when microspheres, with injection Flowing into the water, with repeated cycles, through temporary plugging, deformation, migration, and temporary plugging, and deformation mechanism and migration process of repeated flooding, so microspheres have "inject, stop, move". The characteristics of reservoir adaptability of microspheres from different emulsion system, heterogeneity and the heterogeneous and homogeneous contrast experiment, 3 aspects, compared with a single injection of a single injection of microspheres, surface active agent, low tension microsphere emulsion system, microspheres and surfactant alternating injection and oil displacement efficiency, and the use of microsphere emulsion and surfactant 1:1 alternating injection oil recovery increment highest. Therefore, the microsphere emulsion and surfactant 1:1 alternating injection system is more suitable for the reservoir. At the same time, to study the heterogeneity of reservoir heterogeneity using the experimental model of 5 1:1.1,1:1.5,1:2.5,1:4,1:6 Double Permeability poor results, In the range of low permeability, polymer microspheres emulsion system mainly to "tune", "drive" the auxiliary way; the increase in permeability is poor, flooding has changed to "drive" "" auxiliary way. Heterogeneous small, small, large, very large range of double oil displacement experiment conditions and homogeneous 300mD, 500mD, 800mD single tube displacement experiment were compared, results show that the microsphere emulsion is more suitable for the heterogeneous reservoir. In order to optimize the convenient injection parameters of the first determine the aging time after injection, respectively 24h, 48h and 12h aging, the aging time of the 3 injection and flooding the efficiency of oil, aging aging time for 24h results to determine the best injection agent: slug optimization from slug injection volume (O.3PV, 0.5PV, 0.7PV, 1PV) and slug combination (polymer and surfactant ratio of 1:1,2:1,1:2,1:1:1:1) two aspects of optimization,. The results show that the slug injection 0.5PV and slug combination for 1:1 is the best slug; a comparison of 4 injection rate (0.3ml/min, 0.5ml/min, 1ml/min, 2ml/min) flooding experiment, the results show that the 0.5ml/min injection rate is the best; in the best slug velocity condition, change the mobility control agent (microspheres (0.3%) concentration, 0.5%, 0.7%), surfactant concentration of 0.3% 1:1 constant alternating injection, the results show that the use of 0.5% microspheres as the best concentration of emulsion microspheres.
【学位授予单位】:长江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE39
【参考文献】
相关期刊论文 前6条
1 程诗胜;李晓楠;秦鹏飞;闵路;马惠;;F1断块E_1f_2~3聚合物微球调驱先导试验研究与应用[J];复杂油气藏;2012年03期
2 惠婷婷;;三元复合驱调剖技术应用研究[J];内蒙古石油化工;2013年05期
3 熊春明;唐孝芬;;国内外堵水调剖技术最新进展及发展趋势[J];石油勘探与开发;2007年01期
4 雷光伦;郑家朋;;孔喉尺度聚合物微球的合成及全程调剖驱油新技术研究[J];中国石油大学学报(自然科学版);2007年01期
5 杨怀军;张杰;徐国安;于娣;雷光伦;;高渗油藏聚合物溶液携带弹性微球驱室内实验[J];石油钻采工艺;2011年01期
6 夏惠芬;蒋莹;王刚;;聚驱后聚表二元复合体系提高残余油采收率研究[J];西安石油大学学报(自然科学版);2010年01期
相关硕士学位论文 前2条
1 赵楠;油田用水凝胶微球的制备与评价[D];中国石油大学;2009年
2 陈现军;油田调剖堵水方案优化方法研究与应用[D];西南石油大学;2013年
,本文编号:1502669
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1502669.html