抽油井动液面在线测试技术的应用
本文关键词: 抽油井 动液面 回声仪 气体组分法 套管气 出处:《西安石油大学》2015年硕士论文 论文类型:学位论文
【摘要】:在油田的开发以及采油过程中,动液面是一个非常重要的参数。因此测量动液面值、控制泵挂深度在油田开采过程中十分关键,是实现油井稳定工作、提高懫油效率的存效途径之一。目前动液面测量主要利用回声仪测量,该方法的传统测量方式是利用油管节箍数和油管平均长度计算液面深度(简称“接箍法”),但由于接箍回波遗漏和油管长度不定的制约会导致较大的测量误差,测量的实时性和精度难以保证,难提高产油效率。本文所描述的新型动液面测量方式有别于“接箍法”,而是利用汕、套管环空的气体组分以及温度分布、比热容比、气体压缩因子等参数,借助诺伦经验公式计算声速分布,再根据声波传播的时间间隔,推出动液面深度(简称为“气体组分法”)。本文基于“气体组分法”测量原理,首先利用井温仪传感器测量套管伴生气的温度并初步绘制温度分布图:然后对套管内不同深度的伴生天然气进行懫样,将伴生气样品送入色谱分析仪进行气体的组分分析,同时使用比热容比测定仪测量伴生气体的比热容比;之后根据气体}D分数据,利用国标GB17820-2012可以计算套管伴生气的气体比重和气体压缩因子重点绘制套管内伴生气体的温度分布以及声速分布,在Matlab环境K对数据进行仿真,最终与抽油井的现场实测数据进行对比分析。“气体组分法”相比于"接箍法”,更加注重测井时的套管气体信息,不用考虑接箍数量和套管长度,自动化程度更高,动液面数据的实时性也得到了保证,及时调整抽油泵深度以提高油井产量。但是该方法也有其不足之处,由于懫油过程中在井底动液面附近的压力、温度变化较为频繁,这些都会影响到套管内伴生气体的组分,尤其是当有天然气析出时井底该部分气体组分的变化更为明显,对声速数值大小的影响较大。这需要利用井底温度传感器和压力传感器的测量数据对动液面附近声速估计做出修正,以期提高测量精度。本文还列举出基于“气体组分法”原理的全自动回声仪,对某地油井动液面进行实T精确测量的结果。利用该方法在实际懫油过程中已经取得了良好效果,测量精度较高,促进了汕井采油效率的提高,而且可以实现油井压力恢复分析等诸多功能。
[Abstract]:Dynamic liquid level is a very important parameter in the process of oilfield development and oil recovery, so it is very important to measure the face value of dynamic fluid and control the depth of pump hanging in the process of oil field production, which is to realize the stable work of oil well. One of the ways to improve the efficiency of oil storage. At present, the dynamic liquid level measurement mainly uses echo meter to measure, The traditional measuring method of this method is to calculate the depth of liquid level by using tubing hoop number and average tubing length (abbreviated as "hoop method"), but due to the constraints of hoop echo omission and tubing length uncertainty, the measurement error will be greater. It is difficult to guarantee the real time and accuracy of the measurement and improve the oil production efficiency. The new dynamic liquid level measurement method described in this paper is different from the "coupling method". Instead, it uses the gas components in the casing annulus, the temperature distribution, the specific heat capacity ratio, and so on. In this paper, the velocity distribution of sound is calculated by using Noron's empirical formula, and the depth of moving liquid surface (called "gas component method") is deduced according to the time interval of sound wave propagation. This paper is based on the measuring principle of "gas component method". First, the temperature of associated gas in casing was measured by well thermometer sensor and the temperature distribution map was preliminarily plotted. Then the associated gas samples were collected at different depths in the casing, and then the associated gas samples were sent to the chromatographic analyzer for gas composition analysis. At the same time, the specific heat capacity ratio of the associated gas is measured by using the specific heat volumetric ratio meter, and then according to the data of the gas} D, GB17820-2012 can be used to calculate the specific gravity of the gas associated with the casing and the gas compression factor to draw the temperature distribution and the sound velocity distribution of the associated gas in the casing. The data are simulated in the Matlab environment K. Compared with the "coupling method", the "gas component method" pays more attention to the casing gas information in logging, and does not need to consider the number of hoop and casing length, so the degree of automation is higher. The real-time performance of the moving liquid level data is guaranteed, and the pump depth is adjusted in time to increase the oil well production. However, this method also has its shortcomings, because of the pressure near the moving liquid level at the bottom of the well during the oil processing, the temperature changes frequently. All of these will affect the composition of the associated gas in the casing, especially when there is natural gas precipitation, the change of the gas component in the bottom hole is more obvious. It is necessary to use the measurement data of bottom hole temperature sensor and pressure sensor to modify the sound velocity estimation near the moving liquid surface. In order to improve the accuracy of measurement, this paper also lists the results of accurate measurement of real liquid level of oil wells by automatic echo instrument based on the principle of "gas component method". Good results have been obtained by using this method in the process of actual oil recovery. The measurement accuracy is high, which promotes the oil recovery efficiency of Shantou well, and can realize many functions such as oil well pressure recovery analysis and so on.
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE35
【参考文献】
相关期刊论文 前10条
1 李先瑞,郎四维;热泵的现状与展望[J];北京节能;1999年04期
2 张朝晖;弓志谦;迟健男;张红宇;;采油井动态液面测量技术研究[J];传感技术学报;2007年05期
3 周家新;王长松;汪建新;姚耕耘;李枝梅;;基于AMDF计算抽油井套管环隙内声速[J];传感技术学报;2007年07期
4 赵源深;杨丽红;;薄膜热电偶温度传感器研究进展[J];传感器与微系统;2012年02期
5 孟开元,庄贵林,曹庆年;提取抽油井回音信号中液位值的方法[J];测井技术;2001年01期
6 白秀云,石善勇;井温在注产剖面解释中的应用实例[J];测井技术;2003年02期
7 郭鹏;张朝晖;弓志谦;张红宇;;基于DSP的油井动态液面测量系统[J];测井技术;2007年01期
8 龚育龄,王良书,刘绍文,郭令智,蔡进功;济阳坳陷地温场分布特征[J];地球物理学报;2003年05期
9 郭彤楼,李国雄,曾庆立;江汉盆地当阳复向斜当深3井热史恢复及其油气勘探意义[J];地质科学;2005年04期
10 胡秦辅;;油井液位测量系统设计与应用[J];化工管理;2015年01期
相关博士学位论文 前1条
1 陈立涛;结构声学灵敏度计算方法研究[D];合肥工业大学;2013年
相关硕士学位论文 前1条
1 洪泓;声波扩频油井静液位测量系统的设计与实现[D];哈尔滨工业大学;2009年
,本文编号:1517383
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1517383.html