油砂沥青供氢热裂化降黏改质研究
本文关键词: 相对供氢能力 供氢降黏改质 改质效果 添加剂 出处:《中国石油大学(华东)》2015年硕士论文 论文类型:学位论文
【摘要】:与常规原油相比,劣质重质原油流变性差、高黏、高金属、高沥青质含量,使开采、集输和后续加工都面临很大挑战。有效降黏改质技术是这类稠油集输与加工的迫切需求。供氢热降黏改质技术通过内部供氢馏分循环有效抑制沥青质缔合生焦,提高改质深度,已发展成重要的稠油降黏改质技术。本研究针对该技术对油砂沥青供氢降黏改质适应性、供氢馏分选择和沥青质缔合抑制剂的作用开展研究,为油砂沥青降黏改质技术开发奠定基础。本文首先对油砂沥青进行蒸馏切割和系统评价;在掌握其物理化学性质的基础上针对油砂沥青沸程420 oC减压渣油进行热降黏改质研究;用化学探针法选取了HDA,HDB和HDC三种供氢馏分油,分别考察供氢馏分循环热降黏改质效果;探讨了供氢馏分供氢能力与油砂沥青降黏改质效果的关系;确定了供氢热改质最佳工艺条件;并用辽河特稠油验证了供氢降黏改质效果。此外,考察了三种添加剂,沥青质缔合抑制剂(PET-370),胶溶稳定剂(PET-380)和结焦抑制剂(PET-395)对减压渣油热降黏改质效果的影响。试验结果表明:1)掺炼相对供氢能力较强的馏分油HDB可以使得生成油的黏度和密度降低明显,中间馏分油产率增加;2)在改质过程中,以生焦诱导期为转折点,生成油的黏度和密度呈现先迅速下降后缓慢下降甚至上升的趋势,稳定性也下降;3)油砂沥青420oC减压渣油在循环供氢馏分油HDB(5 wt%)、420 oC和反应时间10 min的条件下,降黏改质效果最佳;4)辽河特稠油拔头油最佳改质条件为:改质温度420 oC、反应时间30 min、供氢馏分DA循环量为5 wt%,或者428 oC、30 min,DA循环量为10 wt%。三种添加剂对沥青质缔合聚沉都有抑制作用,其中PET-395抑制率达到33.8%,最佳添加量为200μg/g。PET-395在410 oC,420 oC和425 oC三个温度下,有效作用时间分别为21 min,15 min和7 min。供氢馏分油HDB与PET-395有协同效应,在确保改质油安定性前提下,可以提高反应苛刻度,从而有效降黏改质。
[Abstract]:Compared with conventional crude oil, inferior heavy crude oil has poor rheological properties, high viscosity, high metal content, and high asphaltene content, so that it can be exploited. Gathering and transportation and subsequent processing are all facing great challenges. Effective viscosity reduction and upgrading technology is an urgent need for gathering, transportation and processing of this kind of heavy oil. Hydrogen supply heat viscosity reduction modification technology effectively inhibits asphaltene association coking through internal hydrogen supply fraction cycle and improves the modification depth. It has been developed into an important viscous oil viscosity reduction and upgrading technology. In this study, the effects of this technology on the adaptation of oil sand asphalt to hydrogen viscosity reduction, selection of hydrogen supply fractions and asphaltene association inhibitor were studied. In this paper, firstly, distillation cutting and systematic evaluation of oil sand asphalt are carried out, based on the physical and chemical properties of oil sand asphalt, thermal viscosity reduction and modification of oil sand asphalt boiling range 420 oC vacuum residuum are studied. Three kinds of hydrogen supplying distillates, HDA-HDB and HDC, were selected by chemical probe method to investigate the heat viscosity reduction and upgrading effect of hydrogen supply fraction cycle, and the relationship between hydrogen supplying capacity and viscosity reduction and upgrading effect of oil sand asphalt was discussed. The optimum technological conditions of hydrogen supplying and heat upgrading were determined, and the effect of hydrogen supply on viscosity reduction and upgrading was verified by Liaohe extra heavy oil. In addition, three additives were investigated. The effects of asphaltene association inhibitor (PET-370) and colloid stabilizer (PET-380) and coking inhibitor (PET-395) on the thermal viscosity reduction of vacuum residuum were studied. The experimental results showed that the addition of fraction HDB, which has relatively strong hydrogen supplying ability, could make the viscosity of the produced oil. And the density decreased significantly, The yield of intermediate distillate oil increased in the process of upgrading. The viscosity and density of the produced oil decreased rapidly first and then decreased slowly and even increased gradually, when the coking induction period was taken as the turning point. The stability of oil sand asphalt 420oC vacuum residuum was also decreased under the condition of circulating hydrogen supply fraction oil HDB(5 420oC and reaction time 10 min. The optimum modification conditions of Liaohe extra heavy oil are as follows: modification temperature 420 OC, reaction time 30 min, hydrogen supply fraction DA cycle 5 wtt, or 428oC + 30 min DA cycle 10 wt.The three additives are associated with asphaltene. All of them have an inhibitory effect. The inhibition rate of PET-395 reached 33.8, the optimum addition amount was 200 渭 g / g 路PET-395 at 410oC 420oC and 425oC, the effective reaction time was 21 min 15 min and 7 min respectively. The hydrogen distillate HDB had synergistic effect with PET-395. Can improve the severity of the reaction, thereby effectively reducing viscosity and quality.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE624.3
【相似文献】
相关期刊论文 前10条
1 张荣军;李海军;任月玲;;塔河油田深层稠油掺稀降黏技术[J];西安石油大学学报(自然科学版);2009年03期
2 齐义彬;王大威;吴萌萌;李国强;吕鑫;马挺;;胶质降解和生物乳化在稠油降黏中的作用[J];石油学报;2012年04期
3 鄢宇杰;李永寿;邱小庆;;塔河油田掺稀降黏技术研究及应用[J];石油地质与工程;2012年06期
4 潘斌林;;草桥稠油热-氧化降黏规律[J];承德石油高等专科学校学报;2012年04期
5 刘彩玉;刘永斌;李枫;;聚合物污水配制液的微波降黏[J];油气田地面工程;2012年09期
6 康宏;李盛贤;吴桐;李梓木;杨光;王靖然;;应用于微生物三次采油的细菌降黏实验研究[J];黑龙江医药;2007年06期
7 梅春明;李柏林;;塔河油田掺稀降黏工艺[J];石油钻探技术;2009年01期
8 武盈;张淑荣;蒋博;张鹏;;一株微生物驱链球菌石油降黏的研究[J];北京化工大学学报(自然科学版);2009年S1期
9 樊泽霞;王腾飞;何玉海;;离子液体对稠油的改质降黏作用影响因素研究[J];燃料化学学报;2009年06期
10 王顺华;尚庆军;周先军;;新型密闭热载体循环降黏工艺参数研究[J];石油钻采工艺;2010年06期
相关会议论文 前2条
1 王晓娥;黄远;;稠油井化学降黏工艺优化决策数学模拟[A];第九届全国渗流力学学术讨论会论文集(二)[C];2007年
2 王建军;林凯;王新虎;申昭熙;;掺稀降黏作业中油管挤毁事故分析[A];中国力学学会学术大会'2009论文摘要集[C];2009年
相关重要报纸文章 前4条
1 罗建东 通讯员 韩建栋;降黏新技术现场试验首获成功[N];中国石油报;2007年
2 特约记者 焦芳捷 焦念友;长效降黏技术高效开发稠油[N];中国化工报;2011年
3 任厚毅;胜利油田一项“863”项目通过科技部验收[N];中国石化报;2010年
4 张明江 杨东辉;电加热降黏工艺“热”了稠油开发[N];中国石化报;2010年
相关硕士学位论文 前3条
1 周莹;油砂沥青供氢热裂化降黏改质研究[D];中国石油大学(华东);2015年
2 刘进东;油砂沥青临氢供氢降黏改质研究[D];中国石油大学(华东);2015年
3 高占胜;低渗透油藏就地自生气助排降黏技术适应性研究[D];西安石油大学;2011年
,本文编号:1525530
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1525530.html