当前位置:主页 > 科技论文 > 石油论文 >

双长链醇醚甜菜碱的合成及性能研究

发布时间:2018-03-15 21:33

  本文选题:双长链醇醚羧基甜菜碱 切入点:合成 出处:《江南大学》2015年硕士论文 论文类型:学位论文


【摘要】:碱-表面活性剂-聚合物(ASP)三元复合驱是我国化学驱提高石油采收率的主要技术,但近年来的矿场试验表明,使用碱尤其是强碱会带来一些副作用,因此以SP二元驱取代ASP三元驱成为新的研究方向。研究发现,双十二烷基甲基羧基甜菜碱(di C12B)在无碱条件下具有优良的降低原油/水界面张力性能,但由于具有双长链烷基,其水溶性较差并且在油砂/水界面有较大的吸附损失。另一方面以椰子油醇聚氧乙烯醚(C12-14EO2OH)为原料合成的双长链醇醚甲基羧基甜菜碱,不仅保留了di C12B的优良性能,而且产品的水溶性有显著改善,在油砂/水界面的吸附损失明显减小。由于工业级醇醚中EO数具有较宽的分布,有关EO数对性能的影响尚不清晰,为此本研究试图合成具有单一EO数的双十二醇聚氧乙烯醚甲基羧基甜菜碱系列产品,以考察EO数对有关驱油性能的影响。以溴代十二烷和一缩二乙二醇(或二缩三乙二醇,三缩四乙二醇)为原料,合成了单分布的十二醇聚氧乙烯醚(C12EOnOH,n=2,3,4),再经氯代、与一甲胺缩合、最后与氯乙酸锂反应得到了目标产物双十二醇聚氧乙烯醚甲基羧基甜菜碱(di C12EOnB,n=2,3,4)。核磁、质谱、化学分析等表征证明所得产品的分子结构与目标化合物一致。对diC12EOnB(n=2,3,4)系列产品的水溶性、基本表面活性、降低正构烷烃/水和大庆原油/地层水界面张力的特性以及在石英砂/水界面的吸附损失进行了评价。结果表明,di C12EOnB(n=2,3,4)在水中的溶解度随EO数的增加而增加,25?C时di C12EO4B的溶解度达到1.5?10-4 mol/L,是di C12B的3倍。di C12EOnB(n=2,3,4)基本保持了di C12B的高表面活性。cmc在(1.15~2.0)?10-5 mol/L,?cmc为27.0~29.5 m N/m,在空气/水界面上的饱和吸附量??为(6.2~5.7)?10-10 mol/cm2。其中随着n的增大,cmc,?cmc以及分子截面积a?略有增大。di C12EOnB(n=2,3,4)单独使用时降低正构烷烃/水界面张力的性能优于di C12B,其中di C12EO2B和di C12EO4B分别能将C13~C15和C7~C9正构烷烃/水界面张力降至超低(0.01 m N/m),di C12EO3B能将C7~C16正构烷烃/水界面张力降至10-2 m N/m数量级。在降低大庆原油/地层水界面张力方面,di C12EOnB(n=2,3,4)单独使用能将大庆原油/地层水界面张力降至10-2 m N/m数量级;其中di C12EO2B亲油性仍偏大,通过与水溶性同系物C16B复配,能在较宽(1.25~7.5 mmol/L)的总浓度范围内将大庆原油/地层水界面张力降至超低;di C12EO3B亲油性略偏大,与水溶性同系物C16B复配能将大庆原油/地层水界面张力降至超低,但合适的总浓度范围缩小(5~7.5 mmol/L);而di C12EO4B亲水性略偏大,与亲油性同系物di C12B和水溶性同系物C16B三元复配,能在较宽(0.625~5.0mmol/L)的总浓度范围内将大庆原油/地层水界面张力降至超低。三种化合物中di C12EO2B为最佳。di C12EOnB(n=2,3,4)在石英砂/水界面的吸附具有饱和吸附量,饱和吸附量随n增加略有下降,其中n值最大的di C12EO4B的饱和吸附量比di C12B下降了35%。总体上EO基团的引入对降低在石英砂/水界面的吸附损失影响不够显著。
[Abstract]:Alkali surfactant polymer (ASP) three ASP flooding is the main technology to improve oil recovery of chemical flooding, but the field tests show that in recent years, especially the use of alkali and alkali will bring some side effects, so SP to two yuan three yuan to replace the ASP drive drive has become a new research direction. Found that di dodecylmethyl carboxybetaine (DI C12B) in non alkaline conditions with excellent performance to reduce the crude oil / water interfacial tension, but because of the double long Lian Wanji, due to its poor water solubility and in oil / water interface has larger adsorption loss. On the other hand with alkyl polyoxyethylene ether (C12-14EO2OH) as raw materials the synthesis of double long-chain carboxyl betaine methyl ether, not only retains the excellent performance of di C12B, and the water solubility of the product has been improved in oil / water interface adsorption loss decreases obviously. The industrial grade has a number of EO in ether Wide distribution, about the effect of EO number on the performance is not clear, the purpose of this study is to synthesize EO single number Double Twelve alcohol polyoxyethylene ether methyl carboxyl betaine series of products, in order to study the influence of EO number on the oil displacement performance. Twelve alkyl bromide with diethylene glycol and triethylene glycol (or two. Three shrink four ethylene glycol) as raw materials, twelve alcohol polyoxyethylene ether single distribution were synthesized (C12EOnOH, n=2,3,4), and then by chlorination, condensation and methylamine, finally reacted with chloroacetic acid lithium to obtain target products Double Twelve methyl alcohol polyoxyethylene ether (DI C12EOnB, n=2,3,4 carboxybetaine). NMR, mass spectrometry, chemical analysis indicates that the molecular structure of the target compound and the product of diC12EOnB (n=2,3,4) series of products of the basic water solubility, surface activity, lower n-alkanes / water and Daqing crude oil / water interfacial tension characteristics and Quartz sand / water interface adsorption loss were evaluated. The results showed that di C12EOnB (n=2,3,4) in water solubility increases with the increase in the number of EO increased 25? C solubility of di C12EO4B reached 1.5? 10-4 mol/L, di C12B.Di C12EOnB (n=2,3,4) 3 times remained the high surface activity of.Cmc di C12B (1.15~2.0) in 10-5? Mol/L, CMC? 27.0~29.5 m N/m, the saturated adsorption capacity of the air / water interface (6.2~5.7) for??? 10-10 mol/cm2. with the increase of N, CMC, CMC and a molecular cross-sectional area of?? (n= 2,3,4 C12EOnB.Di increased slightly when used alone) reduce the n-alkane / water interfacial tension is better than di C12B, di C12EO2B and di C12EO4B respectively, which can be C13~C15 and C7~C9 alkanes / water interfacial tension to ultra low (0.01 M N/m), di C12EO3B C7~C16 can be normal alkane / water interfacial tension to 10-2 m N/ m magnitude. In lower Daqing crude oil / formation Water interfacial tension, di C12EOnB (n=2,3,4) can be used alone in Daqing crude oil / water interfacial tension to 10-2 m N/ m magnitude; Di C12EO2B lipophilic is still relatively large, and the water soluble homologue C16B was in wide (1.25~7.5 mmol/L) Daqing crude oil / water interfacial tension to super low total concentration range; Di C12EO3B lipophilic slightly, and the water soluble compound can be C16B homologues of Daqing crude oil / water interfacial tension to low, but the total suitable concentration range reduced (5~7.5 mmol/L); while di C12EO4B is slightly larger and hydrophilic, lipophilic homologues Di and water C12B soluble homologue C16B three compound, in a wide (0.625~5.0mmol/L) Daqing crude oil / water interfacial tension to ultra low concentration range. The total three compounds in di C12EO2B is the best.Di C12EOnB (n=2,3,4) has full adsorption on quartz sand / water interface And the amount of adsorption and saturated adsorption decreased slightly with the increase of n. The saturated adsorption capacity of di C12EO4B with maximum n value decreased by 35%. compared with that of di C12B. In general, the introduction of EO group had little effect on reducing the adsorption loss at quartz sand / water interface.

【学位授予单位】:江南大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE357.46

【参考文献】

相关期刊论文 前10条

1 黄毅;朱红;王芳辉;张永明;左言飞;魏晓岗;;一种新型环烷基磺酸盐驱油剂的制备及性能[J];北京交通大学学报;2008年06期

2 王斌;孟双明;温月丽;郭永;樊月琴;;分光光度法研究两性聚丙烯酰胺的水溶性[J];北京联合大学学报(自然科学版);2007年03期

3 廖传文;张文艳;王海江;崔正刚;;直接滴定法测定甜菜碱产品中活性物和游离叔胺的含量[J];日用化学工业;2011年01期

4 程杰成,廖广志,杨振宇,李群,姚玉明,徐典平;大庆油田三元复合驱矿场试验综述[J];大庆石油地质与开发;2001年02期

5 张海红;王晓燕;牛丽伟;卢祥国;;SJT-B表面活性剂/聚合物二元复合体系性能评价[J];大庆石油学院学报;2009年01期

6 徐进云,郑帼,葛启,周存,魏俊富;十八烷基甜菜碱的合成与应用性能[J];纺织学报;2005年01期

7 秦旗;;浅谈微生物采油技术[J];硅谷;2008年08期

8 眭纯华;厉华;毕新忠;;世界三次采油现状及发展趋势[J];国外油田工程;2010年12期

9 龙海华;颜利民;宋冰蕾;裴晓梅;蒋建中;崔正刚;;1,3-双癸基甘油醚乙氧基化物的合成与性能研究[J];日用化学工业;2013年03期

10 蔡红岩;王红庄;王强;罗文利;郎哲思;;油酸酰胺丙基甜菜碱的合成与性能[J];日用化学工业;2013年06期

相关博士学位论文 前3条

1 焦艳华;改性木质素磺酸盐的合成及其在三次采油中的应用研究[D];大连理工大学;2005年

2 赵宇;系列烷基苯磺酸盐纯化合物的合成及界面性能的研究[D];大连理工大学;2006年

3 张向宇;无碱二元驱油体系配方及驱油效果影响因素研究[D];大庆石油学院;2010年

相关硕士学位论文 前10条

1 宋红星;新型驱油用非离子表面活性剂的合成与性能研究[D];江南大学;2011年

2 马克新;羟基磺基甜菜碱表面活性剂及复配体系界面特性研究[D];东北石油大学;2011年

3 张腾;两性表面活性剂烷基酰胺羟基磺基甜菜碱的合成及性能研究[D];北京工商大学;2010年

4 屈志强;酰胺基改性羧酸盐类表面活性剂的合成及性能研究[D];北京工商大学;2010年

5 李丹萍;酰胺型双亲油基甜菜碱的合成与性能研究[D];江南大学;2012年

6 段文猛;ASP三元复合驱中各驱油剂的吸附滞留研究[D];西南石油学院;2002年

7 梁勤学;脂肪醇常压胺化法制单烷基叔胺工艺开发[D];四川大学;2003年

8 李俊刚;改变岩石润湿性提高原油采收率机理研究[D];大庆石油学院;2006年

9 鞠野;一元/二元/三元驱油体系微观驱油机理研究[D];大庆石油学院;2006年

10 林士英;烷基羟基磺基甜菜碱黏弹性表面活性剂的合成与性能研究[D];大庆石油学院;2007年



本文编号:1616872

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1616872.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户32693***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com