大庆油田F区块油藏流体物性及产能影响因素分析
本文选题:组分 切入点:挥发油 出处:《东北石油大学》2015年硕士论文 论文类型:学位论文
【摘要】:大庆油田F区块不同于一般黑油油藏,地面流体为油气两相并存,且原油中轻质组分含量较高、原油密度低、收缩性强、生产气油比大,因此F区块流体是一种具有特殊性质的流体,属于特殊性油藏,并且有挥发油的特征。为了更好的开发该区块,分析流体物性、确定F区块油藏流体类型是大规模开发此区块的前提,并对产能进行影响因素分析,进而得到提高产量的措施。本文由F区块两口典型油井的地面油气组成组分合成了油藏流体组成组分,通过PVT模拟器模拟油藏流体PVT实验。与两口典型黑油油井流体作对比,分析了油藏流体的体积系数、粘度、收缩性。利用物性分析结果,通过原油物理特征分析法、液体体积与无因次压力关系曲线法和井流物组成经验判别法等方法确定了F区块流体类型。利用Eclipse中的E300模块以及PVT模拟软件,建立数学模型并与实际井产能对比,通过改变PVT模拟软件以及数学模型中的参数,得到生产气油比、地面油密度、原始地层油粘度、饱和压力、开采时间、井口压力、油嘴尺寸、开采速度、和注水时机等对产能的影响。结果表明,与黑油相比,F区块油藏流体体积系数、收缩率较大,密度、油粘度较小。通过多种方法判断出F区块流体为挥发油。当井底流压大于饱和压力时,生产气油比的越大产能越大,地面油密度越大产能越小,原始地层油粘度越大产能越小,地层油体积系数越大产能越大,饱和压力越大产能越大;当井底流压小于饱和压力时,生产气油比的越大产能越小,地面油密度越大产能越大,原始地层油粘度越大产能越大,地层油体积系数越大产能越小,饱和压力越大产能越小;随着开采时间的增加,地层中压力降到饱和压力的点的位置距离井口越来越远,产量下降速度加快;井口压力越大,油井的稳产时间越长;在不产生水化物的前提下,尽量选择较小尺寸的油嘴;不宜采用较高的采油速度;开采时应在高于饱和压力时注水保压;井底流压应控制在饱和压力附近。
[Abstract]:The F block in Daqing Oilfield is different from the common black oil reservoir. The surface fluid is oil and gas two phases, and the content of light components in crude oil is high, the density of crude oil is low, the shrinkage is strong, and the ratio of producing gas to oil is large. Therefore, the fluid in block F is a fluid with special properties, which belongs to a special reservoir and has the characteristics of volatile oil. In order to develop the block better, the physical properties of the fluid are analyzed. Determining the fluid type of F block reservoir is the premise of large-scale development of this block, and the factors affecting productivity are analyzed. In this paper, the oil and gas components of two typical oil wells in F block have been synthesized and simulated by PVT simulator to simulate the PVT experiment of reservoir fluid. The results are compared with those of two typical black oil wells. The volume coefficient, viscosity and shrinkage of reservoir fluid are analyzed. The fluid types in F block are determined by the method of fluid volume and dimensionless pressure relation curve and empirical discrimination method of well flow composition. Using E300 module in Eclipse and PVT simulation software, the mathematical model is established and compared with the actual well productivity. By changing the parameters of PVT simulation software and mathematical model, the production gas-oil ratio, surface oil density, original formation oil viscosity, saturation pressure, recovery time, wellhead pressure, nozzle size, recovery speed are obtained. The results show that the volume coefficient, shrinkage and density of reservoir fluid in Block F are larger than those of Black Oil. The oil viscosity is small. The fluid in F block is found to be a volatile oil by various methods. When the bottom hole flow pressure is greater than saturation pressure, the larger the gas-oil ratio, the greater the productivity, the lower the surface oil density, the smaller the productivity, the greater the viscosity of the original formation oil, the smaller the productivity. The larger the volume coefficient of formation oil, the greater the productivity, the greater the saturation pressure, the greater the productivity, the smaller the production capacity of gas-oil ratio, the greater the surface oil density, the greater the productivity, the greater the viscosity of the original formation oil, the greater the productivity, when the bottom hole flow pressure is less than the saturation pressure, the larger the production capacity is, the greater the surface oil density is, the greater the productivity is. The greater the volume coefficient of formation oil, the smaller the productivity, the greater the saturation pressure, the smaller the productivity; with the increase of production time, the pressure in the formation drops to the point where the saturation pressure is more and more distant from the wellhead, and the rate of production decline accelerates; the greater the wellhead pressure, the greater the pressure at the wellhead. The longer the stable production time of oil well, the smaller size nozzle should be chosen under the premise of no hydration, the higher oil recovery speed should be adopted, the higher the water injection should be when the production pressure is higher than saturation pressure. Bottom-hole flow pressure should be controlled near saturation pressure.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE31
【相似文献】
相关期刊论文 前10条
1 冯敏,张敏,康凯;陈堡油田陈3区块油藏连通性的地球化学研究[J];油气地质与采收率;2003年05期
2 姜林;杨启浩;张营华;任兆林;王洪亮;;CB246A区块油藏开发存在问题及措施建议[J];内蒙古石油化工;2011年07期
3 李焕鹏;封晓明;;笔架岭油田JL11区块油藏连通性的地球化学研究[J];石油地质与工程;2013年03期
4 朱伟军;周小平;陈柯;;某区块油藏开发动态及注水开发可行性研究[J];辽宁化工;2012年09期
5 吴剑;;溱潼凹陷兴北鹤伦区块油藏成藏规律研究[J];能源与节能;2013年07期
6 姜香云,吴胜和,王志章;储层三维模型在彩9区块油藏描述中的应用[J];西安石油大学学报(自然科学版);2005年04期
7 许弟龙,胡德高,王立军;王广区块油藏高效开发的实践[J];江汉石油学院学报;2003年03期
8 盖凌云;;随机模拟技术在彩10区块油藏描述中的应用[J];科学技术与工程;2009年12期
9 周惠忠;查美生;徐元辉;王利群;;用真空模型研究稠油蒸汽驱开采[J];石油学报;1988年04期
10 ;[J];;年期
相关重要报纸文章 前2条
1 任厚毅;胜利微生物驱油技术现场实施效果好[N];中国石化报;2010年
2 刘国安 通讯员 王学刚;大港油田孔南合作区块进入总体开发阶段[N];中国石油报;2003年
相关硕士学位论文 前3条
1 王慎铭;大庆油田F区块油藏流体物性及产能影响因素分析[D];东北石油大学;2015年
2 刘斐;肇州401区块油藏开发地质特征研究[D];成都理工大学;2008年
3 杨静波;新庙油田嫩1区块油藏描述与开发对策研究[D];东北石油大学;2013年
,本文编号:1625328
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1625328.html