塔河稠油乳化降黏及破乳研究
本文选题:O/W型乳状液 切入点:稠油降黏 出处:《西南石油大学》2015年硕士论文 论文类型:学位论文
【摘要】:随着常规原油可探储量的减少,稠油在能源结构中扮演着越来越重要的角色。稠油具有高凝、高黏、重质的特点,在管输过程中通常需要采取有效的降黏措施改善其流动性,提高输送效率、降低输送能耗与成本,以达到安全、经济输送的目的。 本文针对塔河某区块稠油样,采用乳化降黏法改善稠油流动状态。通过黏度与分水率测量,筛选乳化单剂,并将不同类型的乳化单剂进行复配,进一步使用醇类和碱类改良复配乳化剂,确定乳化降黏剂的配方。使用该配方制备O/W型乳状液,实验研究了油水比、稠油含水率、乳化温度、乳化强度及无机盐对O/W型乳状液性质的影响,同时,考察了油水比和乳化剂浓度两个主要因素对O/W型乳状液动态稳定性的影响。基于稠油O/W型乳状液的流变性特点,采用正交实验方法研究了油水比、加剂浓度和输送温度对管输乳状液流变性及管输压降的影响,同时,对比分析了加热降黏法、掺稀降黏法和乳化降黏法对稠油降黏的适应性。最后,针对制备的塔河稠油O/W型乳状液,筛选、复配得到破乳剂配方,并评价了破乳剂配方的作用效果。 结果表明,在多利,复配剂中,质量比为4:1的TX-100与SDBS复合乳化剂和该塔河稠油配伍性最好。强碱NaOH改良复合剂效果显著,使用0.75%的复合乳化剂与0.1%的NaOH复配制备O/W型乳状液,乳状液的平均粒径为6.5μm,6h的静置分水率为6.3%,稳定效果良好,且降黏率达到99%以上,所以,确定0.75%的复合乳化剂与一定质量浓度(0.08%-0.4%)的NaOH复配剂作为乳化降黏剂的最终配方。在各单因素中,油水比应控制在6:4~8:2范围内;稠油自身含水率不宜超过30%;乳化温度应控制在20℃以上;乳化强度则应低于1500rpm;在无机盐的影响中,单价阳离子Li+、Na+、K+的影响程度随水化半径减小依次增大,根据Hofmeister准则,单价阴离子Cl-、Br-、I-影响程度依次减弱,且一价盐总含量不宜超过0.6mol/L; Mg2+与Ca2+对乳状液影响显著,且Ca2+影响强于Mg2+,二者总含量不宜超过0.05mol/L;SO42-对该乳状液影响较弱,PO43-对乳状液影响显著,其含量不宜超过0.033mol/L。此外,研究O/W型乳状液的动态稳定性,进一步确定油水比应控制在6:4~7:3范围内,乳化剂中NaOH含量应控制在0.08%~0.1%范围围内。油水比对流变方程的稠度系数K具有显著影响,油水比、乳化剂浓度对幂律指数n影响显著,而输送温度对管输流变性影响不显著。管输速度对单位管长压降具有显著影响,对于内径700mm的管道,管输速度不宜超过1.5m/s,其中,在流速相同的条件下,各高压降实验点具有高油水比和高乳化剂浓度的特点。对比分析加热降黏、掺稀降黏和乳化降黏,证明稠油乳化降黏在低温输送方面具有明显的优越性。在13种破乳单剂中,HCl、FeCl3、AlCl3和CTAC等破乳单剂均具有较好的破乳效果,为了提高脱出水的清澈度,引入高聚物分别与破乳单剂进行复配,确定HCl将连续相调节为中性即pH=7,阳离子聚丙烯酰胺(CPAM)质量浓度为0.03%为最优破乳剂配方,此情况下,当温度为30℃时,静置1h的分水率可达到92.77%,且脱出水清澈度较高。
[Abstract]:With the decrease of conventional crude oil exploration reserves, heavy oil plays a more and more important role in the energy structure. Heavy oil has high viscosity, high coagulation, heavy features, in the pipeline process usually needs to improve its liquidity and take effective measures to improve the viscosity, the transport efficiency, reduce transportation cost and energy consumption, in order to achieve safe, economical transportation.
According to a Tahe block of heavy oil, the emulsion viscosity method for improving heavy oil flow rate. By measuring the viscosity and water emulsion, screening single agent, and different types of single agent emulsion was used to use alcohol and alkali modified compound emulsifier, determine the viscosity reducing agent emulsified O/W emulsion preparation formulation. The use of the formula, experimental study on the oil-water ratio, emulsifying temperature, moisture content of heavy oil, emulsifying effect, strength and inorganic salts on O/W emulsion properties at the same time, the effects of two main factors of oil-water ratio and emulsifier concentration on the dynamic stability of emulsion type O/W milk. The characteristics of the heavy oil viscosity of O/W emulsion based on the research of oil-water ratio by orthogonal experimental method, additive concentration and transport effect of temperature on emulsion rheology, and the pipeline pressure drop of pipeline at the same time, comparative analysis of the method of reducing viscosity heating, blending diluting method and emulsification The adaptability of viscous method to viscosity reduction of heavy oil is discussed. Finally, the emulsion formulation of Tahe heavy oil O/W emulsion is screened and compounded, and the effect of demulsifier formulation is evaluated.
The results show that the dolly, mixture, the mass ratio of 4:1 TX-100 and SDBS composite emulsifier and the best compatibility. Tahe heavy alkali modified NaOH composite agent effect, composite emulsifier and 0.1% using 0.75% NaOH compound preparation of O/W emulsion, the emulsion of the average particle size of 6.5 m. The water rate is 6.3% 6h static stability, good effect, and the viscosity reduction rate reached more than 99%, therefore, to determine the composite emulsifier and the concentration of 0.75% (0.08%-0.4%) the final formulation of compound NaOH as emulsifying and viscosity reducing agent. In the single factor, oil-water ratio should be controlled in the range of 8:2 ~ 6:4 heavy oil; moisture content should not exceed 30%; emulsification temperature should be controlled at 20 DEG C; emulsifying strength is less than 1500rpm; the effect of inorganic salt, monovalent cations Li+, Na+, K+ with the influence degree of hydration radius increases, according to Hofmeister Standard, Cl- Br-, I- monovalent anions, the influence degree of isattenuated, and not the total monovalent salt content of more than 0.6mol/L; the influence of Mg2+ and Ca2+ on emulsion significantly, and the influence of Ca2+ is stronger than Mg2+, two of the total content of not more than 0.05mol/L; the weaker effect of SO42- on the emulsion, the effect of PO43- on the content of emulsion significantly. Not more than 0.033mol/L. in addition, study on dynamic stability of O/W emulsion, to further determine the oil-water ratio should be controlled in the range of 6:4 ~ 7:3, NaOH content of emulsifier should be controlled at 0.08% ~ 0.1% range. Has significant effect, consistency coefficient K oil-water ratio on the rheological equation of oil-water ratio, influence of emulsifier concentration on the power-law index n significantly, and temperature on the transport pipeline rheology effect is not significant. The pipeline speed has a significant effect on the pressure drop per unit length, the inner diameter of the pipe 700mm, pipe speed should not exceed 1.5m/s, which, in the phase velocity The same conditions, the pressure drop characteristics of the experimental points with high ratio of oil to water and the high concentration of emulsifier. Comparative analysis of heating viscosity, blending diluting viscosity and emulsification, emulsion viscosity at low temperature that heavy oil transportation has obvious superiority. In 13 kinds of single agent HCl, demulsification, FeCl3, AlCl3 and CTAC single agent has demulsification better demulsification effect, in order to improve the dehydrated water clarity, the introduction of polymers are single agent and demulsification was used to determine the HCl continuous phase adjustment for neutral pH=7, cationic polyacrylamide (CPAM) concentration was 0.03% for optimal demulsifier formulation, in this case, when the temperature is 30 degrees centigrade, water holding rate of 1H can reach 92.77%, and from the water clarity is high.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE39
【参考文献】
相关期刊论文 前10条
1 尉小明,刘喜林,张建英,刘春和;稠油乳化降黏开采用表面活性剂的筛选[J];日用化学工业;2002年04期
2 李传宪;杨飞;林名桢;郭刚;;草桥稠油O/W乳状液的稳定性与流变性研究[J];高校化学工程学报;2008年05期
3 刘宏;化学破乳特性与高分子聚合物破乳[J];工业水处理;2000年09期
4 苑敬;翟雪如;徐桂英;谭业邦;张健;;无机盐对支状嵌段聚醚破乳作用的影响[J];高等学校化学学报;2014年02期
5 姜佳丽;苟社全;达建文;华瑞茂;;原油破乳研究进展[J];化工进展;2009年02期
6 黄翔峰;程航;陆丽君;刘佳;;利用稳定性分析仪研究化学破乳过程[J];化工进展;2010年05期
7 倪良,蒋文华,韩世钧;电导法研究硝基苯/水/十二烷基硫酸钠乳状液的稳定性[J];化工学报;2001年12期
8 邓述波,周抚生,陈忠喜,夏福军,余刚,蒋展鹏;聚丙烯酰胺对聚合物驱含油污水中油珠沉降分离的影响[J];环境科学;2002年02期
9 吴本芳;姚奕明;赵长喜;程红晓;高晋生;;河南特稠油降黏剂及其性能研究[J];华东理工大学学报(自然科学版);2008年06期
10 李方,李干佐,房伟,李锡忠;阴/阳离子表面活性剂复配体系的中相微乳液研究[J];化学学报;1996年01期
相关博士学位论文 前1条
1 白金美;稠油组分及乳化剂对油水界面性质影响的研究[D];中国石油大学;2009年
,本文编号:1643507
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1643507.html