当前位置:主页 > 科技论文 > 石油论文 >

海洋绞车自动排缆系统建模与仿真研究

发布时间:2018-03-28 04:27

  本文选题:海洋绞车 切入点:排缆 出处:《湖南科技大学》2015年硕士论文


【摘要】:深海绞车作为水面支持系统中关键机械装备,是深海遥控潜水器系统、深海拖曳探测系统、海洋管道铺设、及海底取样设备等重型海洋装备的重要组成部分,主要用于水下设备的收放作业。排缆机构是保证绞车实现整齐有序自动收放缆绳的基础,如果绞车在收放缆绳时排缆不好,易出现缠绕不均、乱绳、咬绳现象,会导致缆绳间的严重挤压和摩擦,加剧缆绳的非正常磨损,直接影响缆绳使用寿命和作业安全。传统上,为了解决排缆的问题,通常采用机械式排缆器,但是机械式排缆器的结构和传动机构复杂,且受机械传动机构的限制,排缆的速度不宜过大。本文以海洋绞车排缆机构为研究对象,对无轴排缆控制系统进行了理论建模、仿真分析和相应的应用实践。随着变频技术和伺服控制技术的迅速进步,常规的机械传动模式正在逐渐向无轴传动模式发展,本课题依托实际工程项目需求,以大功率伺服电机为执行动力机构,通过研究伺服排缆系统的机械结构和控制原理,结合无轴同步传动的最新研究成果,基于矢量变换建立了永磁同步电机的动态近似线性方程,并在其基础上参考相关文献资料建立了伺服驱动器的电流环和速度环,并且基于工程经验对其参数进行了整定,将整个传动系统中的刚度折算到丝杆副上,建立了排缆系统的机械传动机构的动力学数学模型,在分析排缆过程中机械和电气各环节数学模型的基础上,基于Simulink软件搭建了排缆伺服同步传动系统的计算机仿真模型,对系统动态响应特性进行了分析并且得出相关因素对系统响应指标的影响,并对排缆控制器速度外环进行了参数整定和仿真实验,为实际系统设计和调试提供了一定的参考价值和理论基础。在理论仿真的基础之上,进行了排缆控制器的应用实践。海洋绞车排缆系统总体上包括上位机监控系统、嵌入式控制系统、伺服驱动器、伺服电机和机械传动系统。依据排缆的工作原理可知卷筒的实际运动状态与排缆行走机构的运动状态有一一对应的关系,排缆控制系统的输入为卷筒运动状态相对应的排缆机构速度给定值,输出为排缆行走机构的实际速度值,整个系统采用闭环控制,控制单元使用STM32和FPGA相结合的方案,考虑到STM32处理器中断延时短、中断能力强、以及故障处理方便以及FPGA并行运算的优点,STM32作为主处理器基于μC/OS-II实时操作系统,保障了排缆系统的各个任务之间的通信、资源的调配和高稳定性,FPGA作为协处理器,在其基础上实现了实现了数据的译码、FIFO和加减速模块等功能,STM32+FPGA的硬件方案优化了系统的实现结构,FPGA的高速处理能力保证了排缆控制器的高速、高精度、高实时性的处理能力特性。
[Abstract]:As the key mechanical equipment in the surface support system, the deep-sea winch is an important part of the deep-sea remote control submersible system, the deep-sea towing detection system, the laying of the ocean pipeline, and the submarine sampling equipment. The cable discharge mechanism is the basis for ensuring the winch to realize orderly and automatic cable retracement. If the winch is not good at discharging the cable, it is easy to appear the phenomenon of unevenness of winding, disorder of rope and biting of rope. It will lead to serious squeezing and friction between cables, aggravate the abnormal wear and tear of the cables, and directly affect the service life of the cables and the safety of their operation. Traditionally, in order to solve the problem of cable discharge, mechanical cable drainers are usually used. However, the structure and transmission mechanism of mechanical cable discharging device are complex, and the speed of cable discharge should not be too large due to the limitation of mechanical transmission mechanism. In this paper, the control system without shaft row cable is theoretically modeled by taking the cable discharge mechanism of offshore winch as the research object. With the rapid progress of frequency conversion technology and servo control technology, the conventional mechanical transmission mode is gradually developing to shaftless transmission mode. By studying the mechanical structure and control principle of the servo cable discharging system, taking the high power servo motor as the executive power mechanism, combining with the latest research results of the axis-free synchronous drive, Based on vector transformation, the dynamic approximate linear equations of PMSM are established, and the current loop and speed loop of the servo driver are established based on the relevant literature. The parameters of the PMSM are adjusted based on the engineering experience. The stiffness of the whole transmission system is converted to the wire rod pair, and the dynamic mathematical model of the mechanical transmission mechanism of the cable discharging system is established. Based on the analysis of the mathematical models of the mechanical and electrical links in the process of cable discharge, The computer simulation model of cable servo synchronous drive system is built based on Simulink software. The dynamic response characteristics of the system are analyzed and the influence of relevant factors on the system response index is obtained. The parameter tuning and simulation experiments of the speed outer loop of the cable discharge controller are carried out, which provide a certain reference value and theoretical basis for the design and debugging of the actual system. The cable discharging system of the ocean winch includes the upper computer monitoring system, the embedded control system, the servo driver, and so on. Servo motor and mechanical transmission system. According to the working principle of cable discharge, it is known that the actual motion state of the reel has a one-to-one correspondence with the motion state of the running mechanism. The input of the cable discharge control system is the given value of the speed of the cable discharging mechanism corresponding to the motion state of the reel, and the output is the actual speed value of the cable discharging and walking mechanism. The whole system adopts closed loop control, and the control unit uses the scheme of combining STM32 and FPGA. Considering the short interrupt delay, strong interrupt capability of STM32 processor, and the advantages of convenient fault processing and FPGA parallel operation, STM32 as the main processor is based on 渭 C/OS-II real-time operating system, which ensures the communication between the various tasks of the cabling system, Resource allocation and high stability FPGA as coprocessors, The hardware scheme of STM32 FPGA is realized, such as decode FIFO and acceleration / deceleration module, etc. The implementation structure of the system is optimized. The high speed processing ability of FPGA ensures the high speed and high precision of the cable discharge controller. High real-time processing capability.
【学位授予单位】:湖南科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE95

【相似文献】

相关期刊论文 前10条

1 程有龙;刘栋;张东升;冯斌;盛晓超;;精密伺服进给平台控制系统设计[J];组合机床与自动化加工技术;2011年06期

2 华茂发;基于虚位移原理的伺服进给电机转矩选配方法[J];机床与液压;2003年06期

3 周保牛;黄俊桂;;具有伺服进给功能的数控主传动系统的研制[J];机床与液压;2009年10期

4 孙名佳;曹文智;马晓波;;基于Isight的机床伺服参数优化技术研究[J];制造业自动化;2013年16期

5 杨永生;;伺服进给系统仿真中的加速度模型辨识[J];自动化应用;2011年04期

6 黄琳莉;陈亭志;;数控机床伺服进给驱动系统的电气故障排查与对策[J];武汉职业技术学院学报;2013年03期

7 沈洪;李洪洲;;电火花三座标同时伺服平动头的研究[J];电加工;1983年01期

8 王恩济;朱宁;吴国兴;;SPOC系统——计算机对电源,伺服,多轨迹自动增量平动头的优控[J];电加工;1989年01期

9 季晓明;;数控机床伺服进给系统常见故障及典型案例分析[J];现代商贸工业;2008年12期

10 王克锡;;英国AGMASPARK公司的新品种[J];电加工;1980年03期

相关会议论文 前1条

1 耿春明;赵万生;刘华;赵家齐;刘晋春;;精密电火花磨削伺服进给策略的研究[A];2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集[C];2001年

相关硕士学位论文 前10条

1 易武志;海洋绞车自动排缆系统建模与仿真研究[D];湖南科技大学;2015年

2 程超;伺服刀架频率特性分析与测试[D];国防科学技术大学;2009年

3 段纬然;复杂面形/结构零件车削加工关键技术研究[D];国防科学技术大学;2007年

4 曹永峰;数控机床伺服进给CAD系统的研究与开发[D];西南交通大学;2002年

5 毕思捷;伺服模拟器的研究与开发[D];中国科学院研究生院(沈阳计算技术研究所);2008年

6 王建明;数控机床伺服特性对机床精度的影响研究[D];西南交通大学;2011年

7 郑向周;基于永磁无刷直流电机的数控传动伺服系统建模与仿真研究[D];太原理工大学;2010年

8 康亚彪;数控机床伺服系统动态仿真及参数优化[D];大连理工大学;2010年

9 蓝益鹏;双位置环直线伺服同步系统鲁棒控制[D];沈阳工业大学;2003年

10 王刘成;数控机床进给伺服系统伺服参数优化研究[D];山西大学;2013年



本文编号:1674764

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1674764.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3ecb1***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com