东营凹陷樊154区块沙河街组致密砂岩孔隙结构特征研究
本文选题:东营凹陷 + 致密砂岩 ; 参考:《成都理工大学》2017年硕士论文
【摘要】:随着油气勘探理论和开发技术的进步,致密砂岩油藏越来越引起人们的关注。致密砂岩油储层非均质性强,储层孔隙结构复杂,储层孔喉大小为纳米—微米分布。为了研究东营凹陷樊154区块沙河街组致密砂岩孔隙结构特征,本论文利用铸体薄片、扫描电镜、常规压汞、恒速压汞和核磁共振等技术手段,分析了研究区沙河街组致密砂岩储层岩石学特征、孔隙类型和孔隙结构等特征,并对储层进行了分类。根据铸体薄片和扫描电镜观察以及X衍射资料,樊154区块沙河街组致密砂岩主要为细粒岩屑砂岩,分选和磨圆中等,线接触,孔隙式胶结。储层填隙物含量较高,以粘土矿物为主。储层主要孔隙类型为粒间孔、粒内溶孔和晶间微孔。喉道类型以片状、弯片状和管束状为主。恒速压汞刻画了储层中喉道半径在0.12μm以上的喉道和连通孔隙的分布情况,储层孔隙半径主要分布在90~200μm,该部分孔隙体积只占总孔隙体积的30%或更小,喉道半径主要分布在0.4~2μm,孔喉比100~300。喉道半径细小,孔喉比大,是造成的流体渗流困难和开发难度大的主要原因。运用核磁共振仪器分别测试了岩样饱和流体和离心后的T_2谱,分析了致密砂岩的可动流体特征。岩样饱和流体和离心后的T_2谱均为单峰,可动流体孔隙空间弛豫时间在10~100ms之间,可动流体饱和度为9.2%~52.2%。结合压汞、铸体薄片和扫描电镜观察,可动流体空间主要为与亚微米级喉道连通的粒间孔,而晶间微孔和溶蚀微孔,且受纳米级喉道控制,流体无法流动。根据常规压汞、铸体薄片、扫描电镜和核磁共振等测试,将研究区致密砂岩储层分为两类:Ⅰ类孔隙度为16.5%~20.7%,渗透率为0.062~0.562×10-3μm~2,排驱压力为0.78~2.06MPa,中值压力为3.25~10.14MPa,可动流体饱和度在44.6%~52.2%,填隙物含量在9%~12%,主要孔隙类型为粒间孔、粒内溶孔和晶间微孔,喉道以片状、弯片状和管束状喉道为主。Ⅱ类孔隙度在9.96%~16.9%,渗透率为0.006~0.111×10~(-3)μm~2,排驱压力为2.23~6.41MPa,中值压力为11.54~54.85MPa,可动流体饱和度在9.2%~25.8%。填隙物含量11~28%,主要孔隙类型为残余粒间孔隙、溶蚀微孔和晶间微孔,喉道以管束状喉道为主。
[Abstract]:With the development of oil and gas exploration theory and technology, tight sandstone reservoir has attracted more and more attention. The tight sandstone oil reservoir with strong heterogeneity reservoir, complex pore structure, pore throat size distribution of nano - micron. In order to study the Dongying depression fan 154 block of Shahe Street Group sandstone pore structure characteristics of casting this paper uses thin section, scanning electron microscope, mercury injection, constant speed mercury injection and nuclear magnetic resonance method, the analysis of the Shahe Street group of tight sandstone reservoir petrology, pore types and pore structure characteristics, and the classification of reservoir. According to the casting thin sections and scanning electron microscope and X diffraction data, fan 154 block of Shahe Street Group sandstone is mainly of fine-grained lithic sandstone, sorting and grinding medium, line contact, pore cementation. Reservoir filler content is high, with clay minerals. The main pore reservoir Type is intergranular pores, intragranular dissolved pores and intergranular pores. Throat type flaky, curved sheet and tube bundle. The constant pressure characterizes the reservoir pore throat radius at 0.12 m above the throat and pore distribution, pore radius is mainly distributed in 90~200 m the pore volume, total pore volume of 30% or less, the throat radius is mainly distributed in the 0.4~2 m, pore throat radius smaller than 100~300., large pore throat ratio, fluid flow is caused by the difficulties and the difficulty of developing the main cause. Using NMR samples were tested and the fluid saturation after centrifugation and T_2 spectrum analysis of movable fluid characteristics of tight sandstone. The rock and fluid saturated after centrifugation T_2 spectra were single peak, the pore space of movable fluid relaxation time between 10~100ms, the movable fluid saturation for 9.2%~52.2%. combined with mercury, casting thin sections and scanning electron microscopy Observation of the movable fluid space is mainly connected with sub micron throat intergranular pores, intergranular pores and dissolution pores and nano, and by the throat control fluid, not flow. According to the conventional mercury injection, casting thin sections, scanning electron microscopy and NMR spectra, the study area is divided into dense sandstone reservoir two types: the first type of porosity is 16.5%~20.7%, permeability of 0.062~0.562 * 10-3 m~2, the displacement pressure is 0.78~2.06MPa, the median pressure is 3.25~10.14MPa, the movable fluid saturation in 44.6%~52.2%, the amount of interstitial material in 9%~12%, the main pore types are intergranular pores, intragranular dissolved pores and intergranular pore throat, lamellar, curved sheet and bundled tubes throat. Class II porosity in 9.96%~16.9%, permeability is 0.006~0.111 * 10~ (-3) m~2, the displacement pressure is 2.23~6.41MPa, the median pressure is 11.54~54.85MPa in the 11~28% 9.2%~25.8%., movable fluid saturation, filler content, main hole The type of gap is residual intergranular pore, dissolution of micropore and intergranular micropore, and laryngeal tract is dominated by tube bundle throat.
【学位授予单位】:成都理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.13
【参考文献】
相关期刊论文 前10条
1 朱如凯;吴松涛;崔景伟;白斌;杨智;惠潇;冯佳睿;苏玲;时文;王晓瑞;;油气储层中孔隙尺寸分级评价的讨论[J];地质科技情报;2016年03期
2 窦文超;刘洛夫;吴康军;徐正建;;基于压汞实验研究低渗储层孔隙结构及其对渗透率的影响——以鄂尔多斯盆地西南部三叠系延长组长7储层为例[J];地质论评;2016年02期
3 明红霞;孙卫;张龙龙;王倩;;致密砂岩气藏孔隙结构对物性及可动流体赋存特征的影响——以苏里格气田东部和东南部盒_8段储层为例[J];中南大学学报(自然科学版);2015年12期
4 盛军;孙卫;赵婷;刘艳妮;张_";;致密砂岩气藏微观孔隙结构参数定量评价——以苏里格气田东南区为例[J];西北大学学报(自然科学版);2015年06期
5 闫建平;温丹妮;李尊芝;耿斌;梁强;何旭;;低渗透砂岩孔隙结构对岩电参数的影响及应用[J];天然气地球科学;2015年12期
6 殷艳玲;孙志刚;王军;房会春;张玉利;刘桂阳;;胜利油田致密砂岩油藏微观孔隙结构特征[J];新疆石油地质;2015年06期
7 任晓霞;李爱芬;王永政;吴松涛;王桂娟;;致密砂岩储层孔隙结构及其对渗流的影响——以鄂尔多斯盆地马岭油田长8储层为例[J];石油与天然气地质;2015年05期
8 毕明威;陈世悦;周兆华;商琳;郑国强;张满郎;高立祥;;鄂尔多斯盆地苏里格气田苏6区块盒8段致密砂岩储层微观孔隙结构特征及其意义[J];天然气地球科学;2015年10期
9 杨智峰;曾溅辉;冯枭;冯森;张译丹;乔俊程;;致密砂岩储层小尺度非均质性与石油富集特征[J];中国矿业大学学报;2016年01期
10 朱华银;安来志;焦春艳;;恒速与恒压压汞差异及其在储层评价中的应用[J];天然气地球科学;2015年07期
相关博士学位论文 前2条
1 任大忠;鄂尔多斯盆地延长组致密砂岩储层微观特征[D];西北大学;2015年
2 宫雪;鄂尔多斯北部巴汉淖地区上古生界致密砂岩储层特征研究[D];西北大学;2014年
,本文编号:1771793
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1771793.html