当前位置:主页 > 科技论文 > 石油论文 >

基于分子矩阵预测石脑油分子水平组成

发布时间:2018-05-04 20:04

  本文选题:分子同系物矩阵 + 石脑油 ; 参考:《石油化工》2016年11期


【摘要】:针对石脑油的组成特点,对分子同系物(MTHS)矩阵进行简化,以C_3~C_(12)的正构烷烃、异构烷烃、环烷烃和芳烃构成的分子矩阵来表示石脑油的分子水平组成;建立了通过工业中常用的石脑油物性数据(如蒸馏曲线、密度)等计算石脑油分子水平组成的方法。以各项物理性质的实测值与预测值的残差平方和构建目标函数,并在原模型的基础上加以有效的约束,进行优化求解,得到石脑油分子水平组成数据。选择两组已知组成的石脑油作为样本,由Aspen Plus模拟软件计算其蒸馏曲线、密度等整体性质,根据上述方法对两组样本进行计算。两组样本的预测结果与真实组成的对比表明,该方法可用来预测石脑油分子水平组成,且准确度较原模型有提升。
[Abstract]:According to the characteristics of naphtha composition, the molecular homologue (MTHS) matrix is simplified, and the molecular level composition of naphtha is expressed by the molecular matrix composed of normal alkane, iso-alkane, cycloalkane and aromatics. A method for calculating the molecular composition of naphtha by means of naphtha physical property data (such as distillation curve, density) is established. The objective function is constructed by the sum of the square of the measured and predicted values of the physical properties, and the effective constraint is given on the basis of the original model, and the optimized solution is carried out, and the horizontal composition data of naphtha molecules are obtained. Two groups of known naphtha were selected as samples, and the distillation curves and densities were calculated by Aspen Plus simulation software. The two groups of samples were calculated according to the above method. The comparison between the predicted results of the two groups of samples and the real composition shows that the proposed method can be used to predict the molecular composition of naphtha, and the accuracy is higher than that of the original model.
【作者单位】: 天津大学化工学院;
【基金】:国家自然科学基金委与中国石油联合基金重点项目(U1462206)
【分类号】:TE626.9

【相似文献】

相关期刊论文 前2条

1 周齐宏,胡山鹰,陈定江,尉志武;基于分子矩阵的炼油过程的全厂模拟[J];过程工程学报;2005年02期

2 ;[J];;年期

相关会议论文 前1条

1 张怀瑾;李向阳;;用子矩阵表示的结构参数敏感度[A];第五届全国结构工程学术会议论文集(第一卷)[C];1996年

相关博士学位论文 前1条

1 龚丽莎;关于子矩阵约束下矩阵方程问题的研究[D];湖南大学;2006年

相关硕士学位论文 前1条

1 刘刚;MRA-框架的高通滤波器乘子矩阵[D];陕西师范大学;2015年



本文编号:1844442

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1844442.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户97792***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com