量子神经网络模型及在储层识别中的应用
本文选题:量子神经网络 + 混合量子衍生神经网络 ; 参考:《东北石油大学》2017年硕士论文
【摘要】:油气层的准确识别是勘探开发的重中之重,大多数识别单纯依靠着专家经验,然而许多的人为因素导致了储层识别的精准度不高。在浪费大量人力物力的同时,却没有达到人们期待的效果。由于储层识别中的影响因素之间是存在着非线性的映射关系,很难用公式来描述其关系,而神经网络能够表达这种映射关系。但是传统神经网络具有一些已经被发现的缺陷,如逼近能力差、易于陷入局部极小值等。在近年来的研究中,有实验可证,将量子计算与神经计算进行融合而出现的新的量子神经网络这一方法对改善神经网络缺陷具有明显作用,因此本文中提出将量子神经网络应用到储层识别中的新方法,以期大幅度提高识别储层识别准确率,并为储层识别问题提供一条新途径。量子神经网络涌现且研究的时间并不是很长,目前可以说是一个全新的领域,且并未完全成熟,进一步深入研究它与其他算法的融合,以期能够进一步提高其性能是十分必要的。基于这一目的,本文拟提出一种基于量子比特在Bloch球面的绕轴旋转构造神经网络模型的新思想,进而研究一种新的量子衍生神经网络模型及算法,把其应用到油气储集层识别问题中。该模型可显著提高其逼近和预测能力。本文主要研究内容如下。首先,设计了一种新型量子神经网络模型。该模型为三层结构,输入层和输出层为普通神经元,隐层为量子神经元。量子神经元的输入为量子比特,关于其映射机制,首先使输入比特绕坐标轴旋转,然后采用泡利矩阵计算旋转后的坐标值,再用Sigmoid函数将坐标值映射为量子神经元的输出。第二,在量子神经网络的训练方面,本文设计了L-M算法和量子蜂群算法。然而这两种算法都有局限性,首先L-M算法收敛较快,但易于陷入局部极小值,量子蜂群算法虽然具有较好的全局寻优能力,但由于采用种群寻优,因此计算效率较低。所以本文提出了一种将两种算法融合的两阶段训练算法。具体研究方案为:首先采用量子蜂群算法实施网络权值的全局探索,然后采用L-M算法实施网络权值的局部开发。第三,针对储层识别问题,研究基于混合量子衍生神经网络的识别方法。首先研究储层分类、储层识别的影响因素,然后结合了矿场实际的测井解释数据,提出了基于混合量子衍生神经网络的储层识别方法。该方法为储层识别问题开辟了新道路。
[Abstract]:The accurate identification of oil and gas reservoir is the most important in exploration and development. Most of the identification is based on the experience of experts. However, many human factors lead to the low accuracy of reservoir identification. Waste a lot of manpower and material resources at the same time, but did not achieve the desired results. Because there is a nonlinear mapping relationship between the influencing factors in reservoir identification, it is difficult to describe the relationship by formula, and the neural network can express this mapping relationship. However, the traditional neural network has some defects that have been found, such as poor approximation ability, easy to fall into local minima and so on. In recent years, it has been proved by experiments that the new method of quantum neural network, which combines quantum computing with neural computing, has obvious effect on improving the defect of neural network. Therefore, a new method of applying quantum neural network to reservoir recognition is proposed in this paper, in order to improve the accuracy of reservoir recognition and provide a new way for reservoir recognition. Quantum neural networks appear and research is not very long, it can be said to be a new field, and not fully mature, further in-depth study of its fusion with other algorithms, It is necessary to further improve its performance. For this purpose, this paper proposes a new idea of constructing a neural network model based on the rotation of quantum bits around the Bloch sphere, and then studies a new quantum derivative neural network model and its algorithm. It is applied to the problem of oil and gas reservoir identification. The model can significantly improve its ability of approximation and prediction. The main contents of this paper are as follows. Firstly, a new quantum neural network model is designed. The model is composed of three layers: the input layer and the output layer are ordinary neurons, and the hidden layer is quantum neurons. The input of a quantum neuron is a quantum bit. As to its mapping mechanism, the input bit is first rotated around the coordinate axis, then the rotated coordinate value is calculated by using Pauli matrix, and then the coordinate value is mapped to the output of the quantum neuron by using the Sigmoid function. Secondly, in the training of quantum neural network, L-M algorithm and quantum bee colony algorithm are designed in this paper. However, both algorithms have their limitations. Firstly, L-M algorithm converges fast, but it is easy to fall into local minimum. Quantum bee colony algorithm has better global optimization ability, but because of population optimization, the computational efficiency is low. So this paper proposes a two-stage training algorithm which combines the two algorithms. The specific schemes are as follows: firstly, the quantum bee colony algorithm is used to implement the global exploration of network weights, and then the L-M algorithm is used to implement the local development of network weights. Thirdly, the recognition method based on hybrid quantum derivative neural network is studied for reservoir identification. Firstly, the reservoir classification and the influencing factors of reservoir identification are studied. Then, a method of reservoir identification based on hybrid quantum derivative neural network is proposed by combining the actual logging interpretation data in the field. This method opens up a new way for reservoir identification.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:P618.13;TP183
【参考文献】
相关期刊论文 前10条
1 李盼池;李国蕊;;混合量子衍生神经网络模型及算法[J];电子与信息学报;2016年01期
2 李盼池;周红岩;;基于受控Hadamard门的量子神经网络模型及算法[J];计算机研究与发展;2015年01期
3 李楠;侯旋;;自适应量子前向对传算法研究[J];电子与信息学报;2013年11期
4 郭通;兰巨龙;李玉峰;江逸茗;;基于量子自适应粒子群优化径向基函数神经网络的网络流量预测[J];电子与信息学报;2013年09期
5 张翼鹏;陈亮;郝欢;;一种改进的量子神经网络训练算法[J];电子与信息学报;2013年07期
6 李盼池;王琪超;施光尧;;基于Bloch球面搜索的量子粒子群优化算法[J];计算物理;2013年03期
7 ;Learning algorithm and application of quantum BP neural networks based on universal quantum gates[J];Journal of Systems Engineering and Electronics;2008年01期
8 丁海军;李峰磊;;蜂群算法在TSP问题上的应用及参数改进[J];中国科技信息;2008年03期
9 朱大奇;桑庆兵;;光电雷达电子部件的量子神经网络故障诊断算法[J];电子学报;2006年03期
10 刘锡健;匡建超;;偏最小二乘神经网络在储层识别和产能预测中的应用——以陕甘宁盆地中部气田马五_1储层为例[J];矿物岩石;2005年04期
相关博士学位论文 前5条
1 李鹏华;量子计算在动态递归与自组织神经网络中的机理及应用研究[D];重庆大学;2012年
2 胥德平;时频分析新方法研究及其在地震资料储层识别中的应用[D];成都理工大学;2012年
3 王泽明;致密砂岩气藏储层特征及有效储层识别研究[D];中国地质大学;2010年
4 陈冬;地震多属性分析及其在储层预测中的应用研究[D];中国地质大学(北京);2008年
5 周日贵;量子神经网络模型研究[D];南京航空航天大学;2008年
相关硕士学位论文 前6条
1 黄伟强;基于量子神经网络的肿瘤细胞图像识别研究[D];华东交通大学;2016年
2 许宏龙;基于BP神经网络技术的储层非均质性研究[D];长江大学;2016年
3 唐凯;天然气储层气水识别方法研究及其应用[D];成都理工大学;2013年
4 张如一;基于希尔伯特黄变换的薄储层识别方法研究[D];中国海洋大学;2012年
5 王磊;薄层测井曲线校正方法及储层识别模型研究[D];西南石油大学;2006年
6 贾焕军;油气层神经网络识别方法研究[D];大庆石油学院;2003年
,本文编号:1852550
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1852550.html