不压井作业装置举升系统的设计与分析
本文选题:不压井作业装置 + 举升系统 ; 参考:《长江大学》2017年硕士论文
【摘要】:相对于传统的修井作业,不压井作业有诸多优势,它改变了以往放喷溢流或利用循环压井液压井的作业方式,可以更好的保护地层结构和环境,从而提高油气的产出能力,也降低了作业风险。作为不压井作业装置的核心部分之一,举升系统的结构形式和强度直接决定了整套设备的承载能力和安全性能。现场工作过程中存在的冲击和振动也会对不压井作业装置产生影响。而举升油缸的同步性关系到整个装置的使用寿命和安全性能。鉴于此,笔者开展了不压井作业装置举升系统的设计与研究,主要开展了如下工作:(1)介绍了不压井作业技术及其应用方面,简述了其作业装置的分类方式。通过研究国内外发展现状,说明了课题研究的背景、意义及主要研究内容。(2)详细介绍了不压井作业装置的主要结构以及举升系统的工作原理,对其在工作过程中所承受的载荷类型进行了分析。根据所受载荷大小对举升系统的举升液压缸进行了参数设计。由于装置在工作过程中存在无支撑区间段,故分析了在强行下压三种标准规格管柱时不同井压下的失稳情况。根据入井深度的不同得出对应的最大作业行程,为现场作业施工提供了相应的理论依据。(3)分析了不压井作业装置在最大上提力和最大下压力工况下支撑托盘和承载架的受力变形情况,结果表明所设计举升系统的各个部件均满足强度要求。同时,根据举升液压缸活塞杆上升至最大行程处时的实际情况,对其稳定性进行了校核。(4)对模态分析进行了简单概述,介绍了弹性力学中结构动力学有限元方程,以及结构无阻尼和外载的自由振动方程和特征值。利用ANSYS对不压井作业装置的举升系统进行了模态仿真研究,计算得到装置的前十阶固有频率值。(5)研究不压井作业装置举升系统的液控部分,设计了液控回路系统。通过建立液控系统的仿真模型得到液压缸位移、流量和速度随时间的变化关系。结果表明所设计回路满足工作速度要求和同步性要求,为实际系统的试验提供了一定的参考。
[Abstract]:Compared with the traditional workover operation, the no-well killing operation has many advantages. It has changed the operation mode of releasing blowout overflow or using circulating well killing hydraulic well, and can better protect the ground structure and environment, thus improving the oil and gas production ability. It also reduces the operational risk. As one of the core parts of the equipment, the structure and strength of the lifting system directly determine the bearing capacity and safety performance of the whole equipment. The impact and vibration during the field work will also affect the operation equipment. The synchronicity of the lift cylinder relates to the service life and safety performance of the whole device. In view of this, the author has carried out the design and research of the lifting system of the non-well killing operation device. The main work is as follows: 1) the technology and application of the non-well killing operation are introduced, and the classification method of the operation device is briefly described. By studying the development situation at home and abroad, the background, significance and main research contents of the project are explained. (2) the main structure of the equipment and the working principle of the lifting system are introduced in detail. The type of load is analyzed. The parameters of the lifting hydraulic cylinder are designed according to the load. Due to the existence of unsupported section in the working process of the device, the instability under different well pressure is analyzed when three kinds of standard pipe string are forced under pressure. According to the different depth of well entry, the corresponding maximum operating stroke is obtained. This paper provides the corresponding theoretical basis for the field operation. (3) analyzes the deformation of the supporting tray and the bearing frame under the maximum lifting force and the maximum downward pressure condition of the non-well killing operation device, and analyzes the deformation of the supporting tray and the bearing frame under the condition of the maximum lifting force and the maximum downward pressure. The results show that all parts of the lifting system meet the strength requirements. At the same time, according to the actual situation when the piston rod of lifting hydraulic cylinder rises to the maximum stroke, the stability of the piston rod is checked and the modal analysis is briefly summarized, and the finite element equation of structural dynamics in elastic mechanics is introduced. And the free vibration equation and eigenvalue of the structure without damping and external load. A modal simulation study on the lifting system of a non-well killing operation device is carried out by using ANSYS. The first ten natural frequency values of the device are calculated and the hydraulic control part of the lifting system of the non-well killing operation device is studied. The hydraulic control loop system is designed. By establishing the simulation model of hydraulic control system, the relationship among displacement, flow rate and speed of hydraulic cylinder with time is obtained. The results show that the designed circuit meets the requirements of working speed and synchronism, and provides a certain reference for the actual system test.
【学位授予单位】:长江大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE935
【相似文献】
相关期刊论文 前5条
1 王连洪;;防爆车液压举升系统的建模与仿真[J];煤矿机械;2012年03期
2 朱平;;探讨630E卡车液压举升系统改造[J];露天采矿技术;2013年05期
3 王成虎;;矿用自卸车液压举升系统原理及常见故障排除[J];矿业装备;2012年07期
4 张计常;;自卸汽车举升系统改进[J];浙江冶金;2001年04期
5 韩延军;;BJZ3530矿用车液压举升系统故障排除[J];矿山机械;2007年12期
相关会议论文 前2条
1 程俊峰;;框架车举升系统原理的研究分析[A];上海物流工程学会2003’论文集[C];2003年
2 刘庆;李耐文;;自卸车气控前置液压举升系统的开发[A];山东汽车工程学会第九次学术年会优秀论文集[C];2007年
相关重要报纸文章 前1条
1 记者 刘坚;海沃液压顶开启系统亮相京城[N];中国汽车报;2001年
相关硕士学位论文 前10条
1 王振永;HSC55P履带式自卸车高位举升系统研究[D];长安大学;2015年
2 魏跃斌;HITFIL主磁铁液压同步举升系统的研究[D];兰州理工大学;2016年
3 林潘英;基于ARM的车载雷达调平及举升系统的设计[D];东南大学;2015年
4 孙荣鑫;气井云压力举升系统设计[D];西南石油大学;2016年
5 张守才;重型卡车驾驶室举升系统液压油真空加注的优化[D];江苏大学;2016年
6 张亚欢;举升系统运动规划与性能优化[D];武汉科技大学;2016年
7 王雷;新型电驱动叉车举升系统及其节能效果分析[D];吉林大学;2017年
8 卢昌;不压井作业装置举升系统的设计与分析[D];长江大学;2017年
9 褚新峰;车载雷达自动调平与举升系统初步研究[D];华中科技大学;2007年
10 李波;半挂车车架及其举升系统的结构设计与分析[D];湖南大学;2014年
,本文编号:1868656
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1868656.html