当前位置:主页 > 科技论文 > 石油论文 >

南海某多相流海底管段内腐蚀速率神经网络预测研究与应用

发布时间:2018-05-19 20:33

  本文选题:海底混输管道 + 多相流 ; 参考:《西南石油大学》2015年硕士论文


【摘要】:国内早期铺设的海底管道中有相当数量的管道从未实施过内检测,由于管道内部情况复杂,亦难以实施内检测。随着服役年限的增长,由于投建初期管道在建设、施工等方面的诸多不足以及随后运行管理过程中维护措施的欠缺,导致此类管道存在着不同程度的安全隐患,同时伴随着输送效率的低下等问题。海底多相流管道其腐蚀影响因素很多,各因素之间又相互作用,当下还没有一种通用的腐蚀速率预测模型。针对这一现状,文中以非线性的人工神经网络算法为基础,通过建立海底管道多相流内腐蚀速率预测模型,自主编制了“多相流海底管道内腐蚀速率预测”程序,主要研究内容如下:(1)海底多相流管道基础参数收集与分析及目标管道的选定针对海底混输管道的输送介质、输送压力、含水量等进行现场资料调研与收集,包括但不限于管道设计、建造、生产、运行与维护资料。基于目前已有的管道内检测情况、清管情况、运行工况等,选定SP76-EP76管道为研究对象,对目标管道进行参数资料整理和分析。(2)内腐蚀直接评估软件OLGA的管道内部工况分析基于海底混输管道(SP76-EP76管段)的路由图,结合海底管道走向高程变化,将目标管道划分为9段,共计60小段。通过对管道内部工况的模拟计算,确定管道内与腐蚀相关参数的分布情况,为自主编制的“多相流海底管道内腐蚀速率预测”程序提供有效的基础参数支撑。(3)基于神经网络算法的“多相流海底管道内腐蚀速率预测”程序编制以OLGA计算得到的与腐蚀速率相关的参数(如温度、压力、持液率、酸性组分含量等)在管道内部的分布情况为基础,建立人工神经网络腐蚀速率预测模型,通过C语言对“多相流海底管道内腐蚀速率预测”程序进行编制。(4)“多相流海底管道内腐蚀速率预测”程序误差分析对自主编制程序“多相流海底管道内腐蚀速率预测”的计算结果、主流“内腐蚀直接评估软件OLGA"的计算结果、现场实际内检测结果进行比较分析,验证“多相流海底管道内腐蚀速率预测”程序的准确性。结果显示:“多相流海底管道内腐蚀速率预测”程序计算结果更符合实际情况。
[Abstract]:A considerable number of pipelines laid in China have never carried out internal inspection, and it is difficult to carry out internal inspection because of the complex internal conditions. With the increase of service life, due to many deficiencies in the construction and construction of pipelines in the initial stage of construction, and the lack of maintenance measures in the subsequent operation and management process, there are some hidden dangers to the safety of such pipelines to varying degrees. At the same time accompanied by the low transport efficiency and other problems. There are many factors affecting corrosion of submarine multiphase flow pipeline, and the factors interact with each other. There is no universal corrosion rate prediction model. In view of this situation, based on the nonlinear artificial neural network algorithm and by establishing the prediction model of internal corrosion rate of multiphase flow in submarine pipeline, the program of "prediction of internal corrosion rate of multi-phase flow submarine pipeline" has been programmed independently. The main research contents are as follows: (1) the collection and analysis of the foundation parameters of the multiphase flow pipeline and the selection of the target pipeline are carried out on the spot investigation and collection for the transport medium, transport pressure and water content of the submarine mixed pipeline. Includes, but is not limited to, piping design, construction, production, operation and maintenance data. Based on the existing pipeline detection situation, pipe-clearing situation, operating conditions and so on, the SP76-EP76 pipeline is selected as the research object. The pipeline internal working condition analysis of OLGA software is based on the route diagram of SP76-EP76 pipeline), and the target pipeline is divided into 9 sections according to the elevation change of submarine pipeline. A total of 60 segments. The distribution of the corrosion related parameters in the pipeline is determined by the simulation calculation of the internal working conditions of the pipeline. It provides effective basic parameter support for the self-compiled program of "Prediction of Internal corrosion rate of Multiphase flow Submarine Pipeline". Based on neural network algorithm, the program of "Prediction of Internal corrosion rate of Multiphase flow Submarine Pipeline" is calculated by OLGA. To parameters related to the corrosion rate (such as temperature, Based on the distribution of pressure, liquid holdup, acid component content and so on, an artificial neural network (Ann) corrosion rate prediction model is established. Programming of "Prediction of Internal corrosion rate of Multiphase flow Submarine Pipeline" by C language.) "Prediction of Internal corrosion rate of Multiphase flow Submarine Pipeline" Program error Analysis of Independent programming Program "Internal corrosion rate of Multiphase flow Submarine Pipeline" The results of the calculation of the rate prediction, The calculation results of the mainstream "direct evaluation software OLGA" are compared and analyzed in the field to verify the accuracy of the program "Prediction of corrosion rate in multiphase flow submarine pipeline". The results show that the calculation results of "prediction of internal corrosion rate of multiphase flow submarine pipeline" are more in line with the actual situation.
【学位授予单位】:西南石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE988.2

【参考文献】

相关期刊论文 前7条

1 王海燕;李玉星;蔡晓华;宋承毅;孟岚;;基于段塞流的通用气液两相流模型的建立与验证[J];化工学报;2013年10期

2 罗鹏;赵霞;张一玲;关中原;林立明;王娟;张倩;;国外天然气管道内腐蚀直接评价案例分析[J];油气储运;2010年02期

3 罗小明;何利民;马华伟;;上升管系统中严重段塞流的液塞速度特性[J];化工学报;2009年07期

4 李晓峰;王海涛;邵良杉;;基于人工神经网络的碳钢、低合金钢腐蚀预测[J];西安建筑科技大学学报(自然科学版);2008年06期

5 黄雪松;姜秀萍;刘强;;油田集输管道介质多相流腐蚀数学模型研究[J];油气储运;2007年03期

6 王海涛,韩恩厚,柯伟;腐蚀领域中人工神经网络的应用进展[J];腐蚀科学与防护技术;2004年03期

7 武俊伟,李明,李晓刚;CO_2腐蚀的神经网络分析[J];中国腐蚀与防护学报;2003年01期

相关博士学位论文 前1条

1 胡舸;海底管线腐蚀检测与腐蚀预测的研究[D];重庆大学;2007年

相关硕士学位论文 前8条

1 雷雨;湿天然气管道低含液率气液两相流液滴夹带机理研究[D];西安石油大学;2015年

2 赵学清;WC19-1B至WC19-1A海底混输管道内腐蚀状态评估技术研究[D];西南石油大学;2014年

3 屈洋;天然气掺凝析油混输工艺模拟研究[D];西南石油大学;2013年

4 刘新野;海底混输管线严重段塞流的预测与控制[D];中国石油大学;2011年

5 邹林;多相混输系统控制技术研究[D];东北石油大学;2011年

6 赵鹏飞;温降、压降分析及其在海管CO_2腐蚀评估中的应用[D];哈尔滨工程大学;2011年

7 刘熠;油气两相流管道内腐蚀研究[D];西南石油大学;2007年

8 陈学锋;SZ36-1油田海管段塞流处理技术研究[D];西南石油学院;2005年



本文编号:1911565

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/1911565.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户d35d9***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com