当前位置:主页 > 科技论文 > 石油论文 >

基于Agent的三次采油生产开发管理数据仓库的设计与实现

发布时间:2018-07-05 02:25

  本文选题:数据仓库 + 数据集成 ; 参考:《东北石油大学》2017年硕士论文


【摘要】:随着油田开发的逐步深入,三次采油工业化规模的日益扩大,利用人工智能技术管理三次采油业务数据已成为三次采油现场的迫切需求。目前,在三次采油生产开发过程中,存在以下问题:第一,影响三次采油产量的因素越来越多,针对三次采油业务数据的管理体系尚不完善,增大了油田业务处理难度,降低了生产数据处理效率;第二,三次采油生产开发数据来源与结构松散度较高,基于多址数据库的管理方式缺乏统一标准,数据获取难度大;第三,三次采油业务种类繁多,业务之间关联性强,使得三次采油人员工作效率降低,导致业务准确率和时效性变差。针对以上问题,本文提出了基于Agent的三次采油生产开发管理数据仓库的框架模型。首先,在数据仓库搭建方面,设计生产数据样本,提出生产开发数据的概念模型、逻辑模型和物理模型,并详细给出各类模型的设计过程和技术指标。其次,分析三次采油业务系统,建立基于多Agent的时序数据集成管理模型,设计业务单体Agent、调度Agent和通信Agent。最后,开发三次采油生产开发管理平台,实现三次采油人员日常工作的数字化、数据分析手段的智能化,解决了数据获取难度大、数据处理效率低、业务准确率和实效性差的问题。基于三次采油生产开发管理数据仓库的模型的基础上,通过Agent实例测试,以某采油厂历史数据为样本实例验证了数据仓库模型的合理性和可实施性。
[Abstract]:With the deepening of oilfield development and the increasing scale of industrialization of tertiary oil recovery, the use of artificial intelligence technology to manage tertiary oil recovery business data has become the urgent need of tertiary oil recovery field. At present, in the process of tertiary oil production and development, there are the following problems: first, there are more and more factors that affect the tertiary oil production, and the management system of the tertiary oil recovery data is not perfect, which increases the difficulty of oilfield business processing. The efficiency of production data processing is reduced. Secondly, the data source and structure of tertiary oil production are loose, the management method based on multiple access database is lack of uniform standard, and the data acquisition is difficult. Thirdly, there are many kinds of tertiary oil production business. Because of the strong correlation between the operations, the efficiency of the tertiary oil recovery personnel is reduced, which leads to the deterioration of the business accuracy and timeliness. In view of the above problems, this paper puts forward the framework model of the data warehouse of tertiary production development management based on Agent. Firstly, in the aspect of data warehouse construction, the production data sample is designed, the conceptual model, logical model and physical model of production development data are put forward, and the design process and technical index of all kinds of models are given in detail. Secondly, the tertiary oil recovery business system is analyzed, and the integrated management model of time series data based on multiple Agent is established. The business unit agent is designed, and the scheduling Agent and communication agent are designed. Finally, the management platform of tertiary oil production development is developed to realize the digitization of the daily work of the tertiary oil recovery personnel and the intelligence of data analysis means, which solves the difficulty of data acquisition and the low efficiency of data processing. Business accuracy and effectiveness of the problem. Based on the data warehouse model of tertiary production development management, the rationality and practicability of the data warehouse model are verified by using the historical data of a certain oil production plant as a sample through Agent case test.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE938;TP311.13

【参考文献】

相关期刊论文 前10条

1 张可佳;李春生;姜海英;赵森;;时间序列下模式挖掘模型设计[J];计算机工程与应用;2015年19期

2 伍晓林;楚艳苹;;大庆原油中酸性及含氮组分对界面张力的影响[J];石油学报(石油加工);2013年04期

3 范广玲;李春生;高雅田;;数据挖掘模型选择的通用建模研究[J];科学技术与工程;2011年19期

4 邱中建;赵文智;胡素云;张国生;;我国油气中长期发展趋势与战略选择[J];中国工程科学;2011年06期

5 眭纯华;厉华;毕新忠;;世界三次采油现状及发展趋势[J];国外油田工程;2010年12期

6 杨海龙;卓兴家;;三次采油技术的现状及发展趋势[J];内蒙古石油化工;2010年22期

7 杨博;刘大有;金弟;马海宾;;复杂网络聚类方法[J];软件学报;2009年01期

8 李梅霞;;国内外三次采油现状及发展趋势[J];当代石油石化;2008年12期

9 黄学;;技术预见在三次采油发展战略中的应用[J];大庆石油地质与开发;2006年04期

10 易高翔;胡和平;;基于软计算的Web挖掘研究进展与前景[J];计算机工程与设计;2006年10期

相关博士学位论文 前1条

1 张可佳;基于混合智能的聚驱区块生产动态预警方法研究[D];东北石油大学;2016年

相关硕士学位论文 前3条

1 李少龙;基于Agent的三次采油动态集成平台的研究与实现[D];东北石油大学;2016年

2 邸京华;基于数据挖掘的三次采油生产预警方法研究[D];东北石油大学;2016年

3 张昕;人工智能中的不确定性问题研究[D];国防科学技术大学;2012年



本文编号:2098509

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2098509.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户3d879***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com