北一二排西二三次井网重构与效果评价
本文选题:井网重构 + 数值模拟 ; 参考:《东北石油大学》2017年硕士论文
【摘要】:北一二排西水驱进入特高含水开发期,受自身平面非均质性较强影响,原开发井网出现了剩余油高度分散、单砂体间注采井距不均衡、注采关系不完善等矛盾,导致地下油水分布总格局发生了重大变化,原井网适应性显著降低,迫切需要开展井网重构研究。对北一二排西井网重构前开发效果进行了评价。评价发现研究区目前产量递减快,含水率高,含水上升快;控制程度和有效动用程度低;剩余油高度分散;单砂体间注采井距不均衡,注采关系不完善等问题。进行精细地质建模与数值模拟。运用Petrel地质建模软件,建立了北一二排西精细地质模型。运用Eclipse进行数值模拟,2015年8月后,剩余油主要分布在SII1-SII9和PII的薄差油层,需要通过“二三次井网重构(互相完善注采关系)”挖潜。制定了以补孔、封堵和转注三种措施为主的井网重构方案。补孔方案包括143口油井,52口水井,1889个补孔点;封堵方案包括46口油井,16口水井,263个封堵点;转注75口油井。从2015年8月开始进行井网重构,到2016年10月措施基本完成。目前,水驱井网有320口油井,247口注入井,其中包括112口注聚井和135口注水井。对井网重构后开发效果进行了评价。(1)2015年进行井网重构调整,水驱井网递减速度减缓,累产油量增幅小幅提升;各油组年产液量下降速度有不同程度缓减,水驱井网各油组的累产液量增幅趋于平缓,总体处于上升趋势。水驱井网递减率由原来的0.0570降低到0.0529,各油组递减率也有不同程度的降低。2016年10月全区含水率94.70%,较井网重构前下降了1.49个百分点。同时有效抑制研究区各油组含水上升率增长,措施效果明显。(2)考虑研究区井网井距、断层断点数据以及油水井所处沉积相,形成了一套连通库的计算方法,建立了水驱井网及聚驱井网连通库。运用连通库数据,根据水聚驱井网控制程度计算方法,确定了水聚驱井网50个小层控制程度。井网重构后水驱井网控制程度由79.23%提高到85.77%,提高了6.54个百分点,控制程度由中等水平转为好;聚驱井网重构后控制程度由72.13%提高到75.90%,提高了3.77个百分点。(3)运用定义法和水驱曲线法对研究区水驱井网动用程度进行研究。井网重构后动用程度由39.35%提高到43.57%,提高了4.22个百分点,井网重构后动用程度水平差。根据当前各油水井的生产制度,运用Eclipse数值模拟软件,定液量生产,进行中长期开发效果预测。油藏工程方法和数值模拟方法确定井网重构后采收率为44.330%,比井网重构前采收率增长0.585个百分点,达到预期调整效果。
[Abstract]:During the development period of the water flooding in the north and second rows of the west, due to the strong influence of its own plane heterogeneity, the original development well pattern appeared some contradictions, such as highly dispersed remaining oil, uneven injection-production interval between single sand bodies, imperfect injection-production relationship, etc. As a result, the total pattern of underground oil and water distribution has changed greatly, and the adaptability of the original well pattern has been significantly reduced, so it is urgent to carry out well pattern reconstruction research. The development effect of the well pattern before reconstruction was evaluated. The evaluation found that the production decline rapidly, the water cut is high, the water cut is rising rapidly in the research area, the degree of control and effective production is low, the remaining oil is highly dispersed, the injection-production well distance between single sand bodies is not balanced, the relationship between injection and production is not perfect, and so on. Fine geological modeling and numerical simulation are carried out. Using Petrel geological modeling software, the fine geological model of Bei Yi er Pai Xi is established. After August 2015, the remaining oil is mainly distributed in thin and differential oil layers of SII1-SII9 and PII, and needs to be tapped through "secondary and tertiary well pattern reconstruction (perfect injection-production relationship)". The reconstruction scheme of well pattern is established, which is based on three kinds of measures: filling hole, sealing and transferring injection. The plugging scheme includes 143 wells with 52 wells and 1889 filling points, 46 wells with 16 wells with 263 plugging points, and 75 wells with injection. The reconstruction of well pattern began in August 2015, and the measures were basically completed in October 2016. At present, there are 320 wells with 247 injection wells, including 112 polymer injection wells and 135 injection wells. The development effect after well pattern reconstruction was evaluated. (1) in 2015, the well pattern was adjusted, the decline rate of water drive well pattern was slowed down, the increment of cumulative oil production was increased slightly, and the decreasing rate of annual liquid production of each oil group was slowed down in varying degrees. The increasing rate of cumulative liquid production of each oil group in water drive well pattern tends to be gentle, and it is on the rise as a whole. The decline rate of water drive well pattern is reduced from 0.0570 to 0.0529, and the decline rate of each oil group is also decreased to some extent. In October 2016, the water cut in the whole area is 94.70%, which is 1.49% lower than that before well pattern reconstruction. At the same time, the increase of water cut rate of each oil group in the study area is effectively restrained, and the effect of the measures is obvious. (2) considering well spacing, fault fracture point data and sedimentary facies of oil and water wells in the study area, a set of calculation method of connected reservoir is formed. The water drive well network and the polymer flooding network connection library are established. Based on the data of the connected database and the calculation method of the control degree of the water flooding well pattern, the control degree of 50 small layers in the water polymer flooding well network is determined. After well pattern reconstruction, the control degree of water drive well pattern is increased from 79.23% to 85.77%, which is increased by 6.54%, and the control degree is changed from medium level to good level. The control degree of polymer flooding pattern was increased from 72.13% to 75.90%, which increased 3.77%. (3) using definition method and water drive curve method, the production degree of water drive well pattern in the study area was studied. After well pattern reconstruction, the production degree is raised from 39.35% to 43.57%, which is increased by 4.22%, and the production level is poor after well pattern reconstruction. According to the current production system of oil and water wells, using Eclipse numerical simulation software, the production of liquid quantity is determined, and the medium and long term development effect is predicted. Reservoir engineering methods and numerical simulation methods determine that the recovery factor after well pattern reconstruction is 44.330%, which is 0.585% higher than that before well pattern reconstruction, and achieves the expected adjustment effect.
【学位授予单位】:东北石油大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE324
【相似文献】
相关期刊论文 前10条
1 孙宝京,周文胜,薛兆杰,魏新辉,关悦;特高含水期井网适应性分析[J];油气田地面工程;2003年07期
2 裴素安;;断块油藏合理井网论证方法[J];内蒙古石油化工;2007年02期
3 王伯军;张士诚;李莉;;基于地应力场的井网优化设计方法研究[J];大庆石油地质与开发;2007年03期
4 吕爱民;姚军;范海军;杜殿发;;海上油田矢量井网研究初探[J];油气地质与采收率;2007年03期
5 王力;;朝阳沟油田井网潜力研究[J];内蒙古石油化工;2007年11期
6 刘志森;刘德华;;模糊数学在元48井区井网选择中的应用[J];石油天然气学报;2008年05期
7 温庆志;曲占庆;齐宁;卢云霄;;考虑启动压力的菱形井网整体压裂优化设计[J];石油天然气学报;2008年06期
8 龚姚进;;多井型油藏井网优化方法探讨[J];特种油气藏;2008年02期
9 周书院;陈雷;解立春;袁海龙;;安塞油田长6油藏井网适应性研究[J];石油天然气学报;2008年01期
10 杜伟;;特高含水期井网综合利用方法研究[J];油气田地面工程;2008年06期
相关会议论文 前10条
1 肖前华;杨正明;徐轩;田文博;张亚蒲;;较均质特低渗透砂岩平板大模型井网适应性实验研究[A];第七届全国流体力学学术会议论文摘要集[C];2012年
2 杨龙;李世辉;王改娥;袁国伟;贾剑波;贾晓伟;;靖安油田大路沟二区长6油藏井网适应性研究[A];石化产业科技创新与可持续发展——宁夏第五届青年科学家论坛论文集[C];2009年
3 张卫华;姚运生;李家明;梅建昌;;三峡井网地下流体动态及其影响因素的分析[A];2007年地震流体专业委员会学术年会暨第三届地震流体专业委员会成立大会摘要集[C];2007年
4 郑伟;姜汉桥;陈民锋;涂兴万;马佳;;水平井井网渗流场分析及井间距的确定[A];渗流力学与工程的创新与实践——第十一届全国渗流力学学术大会论文集[C];2011年
5 田文博;杨正明;徐轩;肖前华;滕起;;特低渗透油藏矩形井网有效驱动物理模拟实验研究[A];第七届全国流体力学学术会议论文摘要集[C];2012年
6 朱维耀;王志平;;不同井型矢量井网产能计算新方法[A];中国力学学会学术大会'2009论文摘要集[C];2009年
7 张卫华;王秋良;李井冈;罗俊秋;郭熙枝;;三峡井网水位潮汐差异与含水层参数关系研究[A];中国地震学会第14次学术大会专题[C];2012年
8 刘磊;李彦录;罗军;郭锦利;袁国伟;张军;;低渗透油藏综合量化评价井网适应性的探讨[A];低碳经济促进石化产业科技创新与发展——第九届宁夏青年科学家论坛石化专题论坛论文集[C];2013年
9 陈华;张建娜;于博;樊辉;阮金凤;王新星;阎娜;;姬塬油田长6油藏水平井立体井网开发技术的应用[A];低碳经济促进石化产业科技创新与发展——第九届宁夏青年科学家论坛石化专题论坛论文集[C];2013年
10 王高强;耿辉景;邵晓岩;郭西锋;侯景涛;张战雨;刘玉峰;马宏伟;;吴起地区致密油效益建产技术研究[A];创新·质量·低碳·可持续发展——第十届宁夏青年科学家论坛石化专题论坛论文集[C];2014年
相关重要报纸文章 前4条
1 特约记者 孙国华 通讯员 刘贞喜;全市地下水盐动态监测井网检查完成[N];巴彦淖尔日报(汉);2010年
2 姜化明 高爱霞;胜利东辛井网优化成稳产法宝[N];中国石化报;2004年
3 邹水平;稳定东部:井网治理事半功倍[N];中国石化报;2002年
4 宋淑慧 张媛;巧织井网捞“油鱼”[N];中国石化报;2011年
相关博士学位论文 前4条
1 毕艳昌;杏南扶杨油层有效开发方式及过渡带井网优化研究[D];中国科学院研究生院(渗流流体力学研究所);2011年
2 孙联中;考虑压裂缝的低渗透油藏井网研究[D];中国地质大学(北京);2011年
3 汤昌福;面积井网油藏流线模拟及其应用[D];中国地质大学(北京);2013年
4 刘峰;低渗透各向异性油藏油井产能及合理井网研究[D];西南石油大学;2014年
相关硕士学位论文 前10条
1 代仲奇;虎狼峁区长6油田开发方式及井网适应性研究[D];长江大学;2015年
2 高建武;王家川油田平崾岘区块注水开发技术研究[D];西安石油大学;2014年
3 陈晓冬;柴达木盆地七个泉油田层系、井网适应性研究[D];西南石油大学;2013年
4 何斌;M15-1区块水平井开发规律及井网适应性评价[D];燕山大学;2016年
5 张景涛;大庆M15-1区混合井网注采参数及开发指标优化[D];燕山大学;2016年
6 王吉晨;黑A区块压裂水平井井网优化研究[D];东北石油大学;2016年
7 舒圣荐;喇嘛甸油田Z块特高含水期层系细分井网重构技术研究[D];东北石油大学;2016年
8 宋文;鄂尔多斯盆地H油田M井区长9油层综合治理技术研究[D];西北大学;2016年
9 倪威;水平井井网优化方法研究[D];中国石油大学(华东);2015年
10 姚婷;深水油藏井网优化方法研究[D];中国石油大学;2011年
,本文编号:2106632
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2106632.html