聚硅氧烷稠油破乳剂的合成与性能评价
本文选题:稠油破乳剂 + 含氢硅油 ; 参考:《陕西科技大学》2015年硕士论文
【摘要】:目前,世界能源危机日趋严重,加上容易开采的常规原油储量在不断减少,越来越多的国家开始重视对稠油的开采。据统计,在全世界范围内,稠油的储量要远大于常规原油的储量。我国的稠油资源储量也较为丰富,已经探明的稠油储量为总石油储量的15%~20%。稠油与常规原油相比,含有较高的沥青质、胶质,其吸附在油水界面形成牢固的界面膜,导致稠油乳液比普通原油乳液更难脱水。因此稠油专用破乳剂的研发具有十分重要的经济和社会意义。以甲基为侧链的有机硅聚合物具有低表面张力的突出特点,而侧链连接亲水亲油基团使其同时具有亲水亲油性能。通过调节各种亲水亲油基团的比例,可以合成多种有机硅原油破乳剂。胶质、沥青质分子的基本结构是以多个芳香环组成的稠合芳香烃为中心,周围连接若干环烷环、芳香环。具有芳环结构的破乳剂在稠油中会有很好的溶解扩散性,从而体现出脱水速率快、脱水率高的优势。本课题首先通过酯化反应合成了中间体丙烯酸壬基酚聚氧乙烯聚氧丙烯酯,然后用甲基封端聚醚与自制聚醚酯改性含氢硅油合成了一种新型的聚硅氧烷稠油破乳剂。主要研究了中间体与聚硅氧烷稠油破乳剂的合成工艺条件并对自制稠油破乳剂的破乳性能进行评价,主要研究结果如下:(1)以丙烯酸、壬基酚聚氧乙烯聚氧丙烯醚为原料,在对甲苯磺酸的催化下,发生酯化反应,合成了中间体丙烯酸壬基酚聚氧乙烯聚氧丙烯酯。探讨了中间体的合成条件,并对结构进行表征。最佳的合成条件为:反应时间为6h,反应温度为130℃,丙烯酸、壬基酚聚氧乙烯聚氧丙烯醚的摩尔比为5.0:1,催化剂用量为3%,阻聚剂用量为0.8%,在此条件下酯化率达到97.9%。(2)以氯铂酸为催化剂,甲基封端聚醚、自制聚醚酯(聚醚酯与甲基封端聚醚摩尔比为1:1)与0.08%含氢硅油发生硅氢化加成反应,合成了一种聚硅氧烷稠油破乳剂。探讨了破乳剂的合成条件,并对结构进行表征。最佳的合成条件为:反应时间为8h,反应温度为95℃,硅氢键与双键摩尔比为1:1.20,催化剂用量为50μg/g,在此条件下Si-H转化率达到93.5%。通过聚硅氧烷稠油破乳剂水溶液表面张力测试可知,其临界胶束浓度为0.8g/L,最低表面张力为27.035m N/m,并且随着聚醚酯与甲基封端聚醚摩尔比的增加表面张力呈降低趋势。(3)探讨了聚硅氧烷稠油破乳剂对陈庄稠油乳状液的破乳效果,得出最佳的破乳条件为:破乳剂用量为200mg/L,破乳温度为75℃,破乳时间为2.5h,聚醚酯与聚醚摩尔比为3:1,在此条件下脱水率为83.5%。与市售的PFA8311、AE2010、PR4041、SP169四种破乳剂进行破乳性能对比得出结论:聚硅氧烷稠油破乳剂具有脱水率高、脱水速率快的优点,但也显出脱水后油水界面不是很整齐、脱出水质泛黄的缺点。(4)将聚硅氧烷稠油破乳剂与AE2010进行复配破乳,在自制破乳剂用量为120mg/L,AE2010用量为80mg/L复配时破乳效果最佳,在此复配比例下,破乳温度为75℃,破乳时间为2h,脱水率达到92.4%,并且油水界面整齐、脱出水质清。
[Abstract]:At present, the world energy crisis is becoming more and more serious, and the regular crude oil reserves that are easy to be exploited are decreasing continuously. More and more countries begin to attach importance to the exploitation of heavy oil. According to statistics, the reserves of heavy oil are far greater than those of conventional crude oil. Compared with conventional crude oil, 15%~20%. heavy oil with total oil reserves contains high asphaltene and colloid, which is adsorbed on the oil-water interface to form a solid boundary mask, resulting in more difficult dehydration of heavy oil emulsion than ordinary oil emulsion. Therefore, the development of heavy oil specific demulsifier has great economic and social significance. The compound has a protruding characteristic of low surface tension, while the side chain connects hydrophilic lipophilic groups with hydrophilic lipophilic properties at the same time. By adjusting the proportion of various hydrophilic groups, a variety of organosilicon crude oil demulsifier can be synthesized. The basic structure of the colloid and asphaltene molecules is centered on the thickened aromatic hydrocarbons composed of several aromatic rings. A number of cyclic naphthenic rings and aromatic rings are connected. The demulsifier with aromatic ring structure will have good solubility and diffusivity in heavy oil, which reflects the advantages of fast dehydration rate and high dehydration rate. A new type of polysiloxane heavy oil demulsifier was synthesized by ether ester modified silicone oil. The synthetic process conditions of the intermediate and polysiloxane heavy oil demulsifier were mainly studied and the demulsification performance of the homemade heavy oil demulsifier was evaluated. The main results were as follows: (1) the acrylic acid and nonylphenol polyoxyethylene polyoxypropylene ether were used as the raw material. Under the catalysis of toluene sulfonic acid, the intermediate of polyoxyethylene polyoxyethylene acrylic acid nonylphenol polyoxypropylene ester is synthesized. The synthesis conditions of the intermediate are discussed and the structure is characterized. The optimum synthesis conditions are as follows: the reaction time is 6h, the reaction temperature is 130, and the molar ratio of acrylic acid and nonylphenol polyoxyethylene polyoxypropylene ether is 5.0:1, The amount of catalyst was 3% and the dosage of inhibitor was 0.8%. Under the conditions, the esterification rate reached 97.9%. (2) with chloroplatanic acid as the catalyst, methyl terminated polyether, the homemade polyether ester (polyether polyether molar ratio is 1:1) and the hydrogenated hydrogenated silicon oil containing 0.08% hydrogen silicone oil, and a kind of polysiloxane heavy oil demulsifier was synthesized. The demulsifier was discussed. The optimum synthesis conditions are as follows: the reaction time is 8h, the reaction temperature is 95, the molar ratio of hydrogen bond to double bond is 1:1.20, and the amount of catalyst is 50 u g/g. Under this condition, the conversion of Si-H reaches 93.5%. through the surface tension test of the water solution of polysiloxane heavy oil demulsifier, and the critical micelle concentration is determined. 0.8g/L, the minimum surface tension is 27.035m N/m, and the surface tension decreases with the increase of the mole ratio of polyether ester and methyl terminated polyether. (3) the demulsification effect of polysiloxane heavy oil demulsifier to Chen Zhuang heavy oil emulsion is discussed. The optimum demulsification conditions are as follows: the dosage of demulsifier is 200mg/L, the demulsification temperature is 75, and the demulsification time is the time. For 2.5h, the molar ratio of polyether ester and polyether is 3:1. Under this condition, the dehydration rate is 83.5%. and four kinds of demulsifier, PFA8311, AE2010, PR4041 and SP169 are compared. The conclusion is that the polysiloxane heavy oil demulsifier has the advantages of high dehydration rate and fast dehydration rate, but it also shows that the oil and water interface is not very neat after dehydration, and the water quality is out of water. The shortcoming of yellowing. (4) the demulsification of the polysiloxane heavy oil demulsifier and AE2010, the best demulsification effect when the dosage of the homemade demulsifier is 120mg/L and the AE2010 dosage is 80mg/L, the demulsification temperature is 75, the demulsification time is 2h, the dehydration rate is 92.4%, and the oil and water interface is neat, and the water quality is clear.
【学位授予单位】:陕西科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE39
【参考文献】
相关期刊论文 前10条
1 李新学,林瑞森;油水界面行为对原油乳状液破乳的影响[J];日用化学工业;2001年06期
2 杜玉海;康仕芳;;优秀原油破乳剂所具备的性能初探[J];高分子通报;2006年11期
3 张谋真;郭立民;李继忠;刘启瑞;王潇;张东瑜;;聚醚型原油破乳剂对陕北原油的破乳脱水性能研究[J];化学与生物工程;2009年01期
4 姜佳丽;苟社全;达建文;华瑞茂;;原油破乳研究进展[J];化工进展;2009年02期
5 丁彬;梁金禄;刘玉章;王平美;罗健辉;;稠油化学破乳技术研究进展[J];化工进展;2010年S2期
6 夏立新,曹国英,陆世维,张路,俞稼镛;原油乳状液稳定性和破乳研究进展[J];化学研究与应用;2002年06期
7 李平,郑晓宇,朱建民;原油乳状液的稳定与破乳机理研究进展[J];精细化工;2001年02期
8 朱宗将,冯国立,刘兆滨,田春云,朱建民;高效稠油破乳剂OX-932的研制与应用[J];精细化工;2002年S1期
9 肖稳发;原油破乳剂的研究进展[J];精细与专用化学品;2004年24期
10 付亚荣;付丽霞;付茜;吴泽美;王晓军;李明;;原油低温破乳剂的研究与应用[J];精细与专用化学品;2010年04期
相关硕士学位论文 前7条
1 刘华沙;烷基芳基磺酸盐分子量及其分布对原油乳化性能的影响[D];东北石油大学;2011年
2 李杰;树枝状大分子破乳性能与破乳机理研究[D];大庆石油学院;2004年
3 樊三林;超稠油破乳剂研究[D];大庆石油学院;2005年
4 肖红;三元复合驱采出液性质的研究及油水分离器的优化设计[D];天津大学;2007年
5 罗志宏;新型破乳剂的合成与应用研究[D];吉林大学;2009年
6 刘顺平;稠油低温破乳研究[D];东北石油大学;2013年
7 张兵强;中原油田毛8区块稠油乳化特性及脱水工艺研究[D];西南石油大学;2013年
,本文编号:2109561
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2109561.html