海洋钻井绞车升沉补偿系统设计及控制策略研究
本文选题:浮式钻井 + 绞车 ; 参考:《中国石油大学(华东)》2015年博士论文
【摘要】:升沉补偿装置是海洋浮式钻井系统中的重要设备,用来减轻平台升沉运动对钻井作业的不利影响。国外升沉补偿系统的研究起步早,一直垄断着这项技术,国内少数高校及科研院所尚处于理论研究、模拟仿真、原理样机研制及试验研究阶段。升沉补偿装置按照动力供应方式分为被动式、主动式和半主动式,按照安装位置与工作原理分为游车大钩间的升沉补偿装置、天车升沉补偿装置以及绞车升沉补偿装置。相对于其它升沉补偿方式,近年来国外开发的主动式绞车升沉补偿装置具有工作效率高、传动简单、结构紧凑、钻井设备重心低、平台载荷与占用空间少、补偿行程不受限制等优点,受到业内的高度重视,国内相关企业也已经开始着手进行绞车补偿技术的研究。在分析总结国外先进技术的基础上,论文提出一套新型半主动式绞车升沉补偿系统方案,并通过对比评价、理论分析、计算机仿真和试验研究等多种手段,对该方案进行深入研究,以达到简化海洋钻机结构、提高补偿性能、降低补偿能耗的目的,并提高系统对不同海况及工况的适应性,加速绞车升沉补偿装置的国产化进程。在所开发的海洋钻井半主动式绞车升沉补偿方案中,利用2K-H型差动行星轮系双动力输入、单输出的特点,分别控制外齿圈和太阳轮实现钻井过程中的升沉补偿运动与自动送钻运动,使行星架驱动绞车实现边补偿、边送钻的复合运动,从而实现了两种运动的硬件解耦控制;采用电液混合动力驱动,通过被动液压马达与液气蓄能装置平衡钻机静载荷,对负载重力势能进行周期性回收与释放,矢量变频电机克服补偿过程中的其余载荷,从而在保证补偿精度的前提下,实现了液压蓄能节能。半主动式绞车补偿系统需要满足升沉补偿、自动送钻和空钩作业等工况要求;此外还能对钻柱断脱、管线破裂、失电等突发事故进行安全响应。以井深10000 m、补偿负载350 t、平台升沉与补偿行程7.62 m、升沉周期12 s为设计参数及技术指标,分析了绞车升沉补偿能耗的变化规律及影响因素。综合考虑装机功率、系统能耗、结构强度及钢丝绳寿命等因素,并参考国外主动式补偿绞车产品技术参数,确定了半主动式补偿绞车的电液联合驱动方案及关键结构参数。新型半主动式绞车补偿方案相对于主动补偿方式的节能效果明显。设计了半主动式补偿绞车的关键结构,包括绞车、差动行星减速器及液压控制系统。主动补偿电机、被动补偿液压马达与布置在差动行星减速器外齿圈上的多个输入轴相连,完成升沉补偿及起下钻等功能;送钻电机通过大减速比双级摆线减速器与差动行星减速器太阳轮输入轴相连,完成自动送钻及应急起放井架、钻具等功能。绞车满足强度及刚度要求;差动行星减速器满足传动比、强度及安装要求;液压马达可以在升沉补偿、起下钻、自锁、浮动等工况之间自由切换。补偿绞车整体对称布置、结构紧凑、安全可靠性强,满足钻井工作要求。设计了半主动式补偿绞车的运动解耦控制策略,并进行了系统建模与仿真研究。升沉补偿采用外环大钩位移闭环与内环电机转速闭环的双层控制方案,自动送钻采用外环钻压闭环与内环电机转速闭环的双层控制方案。建立各环节的数学模型,搭建Simulink/AMESim联合仿真模型,进行了升沉补偿与自动送钻的运动仿真。研究结果表明:被动式补偿效果很差;主动及半主动式补偿效率均达到95%以上,随着钻井井深的增加,半主动式补偿相对于主动式节能22.1%-52.3%,井深越大,节能效果越好;自动送钻过程中井底钻压稳定,满足浮式钻井要求。开展了升沉补偿运动控制算法的研究。内模算法基于系统数学模型,只需调节滤波器时间常数就可以调整系统的动态性能与鲁棒性;当所建立模型与系统实际模型匹配时,内模算法对PID参数的整定方便、准确;模型不匹配时,固定的时间常数则会严重影响控制性能。模糊算法依赖工程经验,控制精度较低,但其鲁棒性及抗干扰能力较强。通过对多种控制算法进行对比,最终设计了模糊内模控制器:建立滤波器时间常数的模糊推理系统,实现在线整定,具有PID参数整定方便、鲁棒性和抗干扰能力强的优点。研制了一套1:5缩尺的补偿绞车原理样机,并搭建了原理样机的试验系统,基于此系统开展试验研究。试验结果表明:绞车升沉补偿与自动送钻的控制性能良好,半主动式补偿相对于主动式节能效果明显,验证了系统方案的可行性,为实际工程样机的研制奠定了基础。
[Abstract]:The heave compensation device is an important equipment in the offshore floating drilling system, which is used to reduce the adverse effect of platform lifting movement on the drilling operation. The research on the compensation system abroad has been early and has been monopolized by this technology. The theoretical research, simulation, simulation, prototype development and experimental research of a few universities and scientific research institutes in China are still in the field. Stage. The heave compensation device is divided into passive, active and semi-active type according to the power supply mode, according to the installation position and working principle, it is divided into the hoisting and sinking compensation device, the heaving and sinking compensation device and the hoist compensation device. The compensation device has the advantages of high efficiency, simple transmission, compact structure, low center of gravity of drilling equipment, low platform load and occupancy space, unrestricted compensation travel and so on. It is highly valued in the industry. The domestic related enterprises have begun to study the compensation technology of the winch. Based on the analysis and summary of advanced foreign technology, A set of new semi active winch hoist compensation system is proposed in this paper. Through comparative evaluation, theoretical analysis, computer simulation and experimental research, the scheme is studied in depth to simplify the structure of the offshore drilling rig, improve the compensation performance, reduce the energy consumption of compensation, and improve the system for different sea conditions and working conditions. In the developed marine drilling semi active winch hoist compensation scheme, using the dual dynamic input of 2K-H differential planetary gear train and the characteristic of single output, the hoist compensation motion and automatic drilling movement in the drilling process are controlled by the outer ring and the sun wheel. The star rack driven winch realizes the side compensation and the compound movement of the drill, thus realizing the decoupling control of the two kinds of motion. By using the electro-hydraulic hybrid drive, the static load of the drilling machine is balanced by the passive hydraulic motor and the liquid gas accumulator, and the load gravity potential energy is periodically returned and released, and the vector frequency conversion motor overcomes the compensation process. The rest of the load, thus guaranteeing the precision of the compensation, realizes the hydraulic energy saving. The semi-active winch compensation system needs to meet the requirements of the hoisting compensation, automatic drilling and air hook operation, in addition to the safety response to the burst of the drill string, the rupture of the pipeline, the loss of electricity and so on. The compensation load is 350 t, with the depth of 10000 m in the well depth. The platform lift and compensation travel 7.62 m and the lifespan 12 s are design parameters and technical indexes. The change law and influence factors of the hoist compensation energy consumption are analyzed. The factors such as the loading power, the system energy consumption, the structural strength and the steel rope life are taken into consideration, and the semi-active formula is determined by reference to the technical parameters of the foreign active compensatory winch products. The electro-hydraulic joint drive scheme and the key structure parameters of the compensation winch. The new semi active winch compensation scheme has an obvious energy saving effect compared with the active compensation method. The key structure of the semi-active compensation winch is designed, including the winch, the differential planetary reducer and the hydraulic control system. The active compensation motor, the passive compensation hydraulic motor and the hydraulic motor are designed. It is arranged in the external gear ring of the differential planetary gear reducer, which is connected by several input axes, and completes the function of heave compensation and drilling, and so on. The drill motor is connected with the input shaft of the differential planetary reducer with the double stage cycloid reducer, and completes the automatic drilling and emergency lifting derrick, drilling tools and other functions. The winch satisfies the strength and stiffness requirements. The differential planetary reducer meets the transmission ratio, strength and installation requirements; the hydraulic motor can switch freely between the lifting and sinking compensation, the drilling, the self locking and the floating. The compensation winch is arranged symmetrically, the structure is compact, the safety and reliability are strong, and the motion decoupling control strategy of the semi-active compensation winch is designed, and the motion decoupling control strategy is designed and entered. The system modeling and simulation study. The hoisting compensation adopts the double control scheme of the outer ring hook displacement closed loop and the inner loop motor speed closed loop. The automatic drill adopts the double control scheme of the outer ring drilling pressure closed loop and the inner loop motor speed closed loop. The mathematical model of each link is set up and the Simulink/AMESim joint simulation model is built, and the heave compensation is carried out. The results show that the passive compensation effect is very poor; the active and semi-active compensation efficiency is above 95%. With the increase of the drilling well depth, the semi-active compensation is relative to the active energy saving 22.1%-52.3%, the greater the depth of well, the better the energy saving effect; the bottom hole drilling pressure is stable in the automatic drilling process, and the floating type is satisfied. The internal model algorithm is based on the system mathematical model. The dynamic performance and robustness of the system can be adjusted only by adjusting the time constant of the filter. When the model is matched with the actual model of the system, the internal model algorithm is convenient and accurate for the tuning of the PID parameters; when the model is not matched, the model is fixed. The fixed time constant will seriously affect the control performance. The fuzzy algorithm relies on the engineering experience, the control precision is low, but its robustness and anti-interference ability are strong. Through the comparison of various control algorithms, the fuzzy internal model controller is finally designed: the fuzzy inference system of the time constant of the filter is established, and the PID parameters are realized online. It has the advantages of convenient setting, robustness and strong anti-interference ability. A set of 1:5 miniature compensatory winch prototype is developed, and the test system of the principle prototype is set up. The test results are carried out based on this system. The experimental results show that the control performance of the hoist compensation and automatic drilling is good, and the semi-active compensation is relative to the active energy saving effect. Guo Mingxian verified the feasibility of the system plan, and laid the foundation for the development of the actual engineering prototype.
【学位授予单位】:中国石油大学(华东)
【学位级别】:博士
【学位授予年份】:2015
【分类号】:TE951
【相似文献】
相关期刊论文 前10条
1 白鹿;张彦廷;张作龙;刘振东;武光斌;;钻柱液压升沉补偿系统参数计算及比较分析[J];石油矿场机械;2009年03期
2 陈祖波;吕岩;李志刚;高杭;;浮式钻井钻柱升沉补偿概述[J];石油矿场机械;2011年10期
3 张萌;胡小东;李波;;半主动式钻柱升沉补偿系统补偿机理分析[J];石油机械;2012年05期
4 徐宝富;羊衍贵;谌志新;王云杰;;基盘升沉补偿系统的设计和分析[J];中国工程机械学报;2012年03期
5 黄鲁蒙;张彦廷;张磊;刘美英;;半主动式钻井绞车升沉补偿系统[J];石油勘探与开发;2013年05期
6 元峻星;;第二讲 升沉补偿——浮船钻井的必需设备[J];中国海洋平台;1992年02期
7 任克忍;沈大春;王定亚;肖锐;李鹏;南树歧;;海洋钻井升沉补偿系统技术分析[J];石油机械;2009年09期
8 张彦廷;渠迎锋;刘振东;马江涛;;天车升沉补偿系统摇摆装置的设计[J];浙江大学学报(工学版);2012年12期
9 姜浩;刘衍聪;张彦廷;刘振东;;钻柱升沉补偿试验台控制系统设计[J];石油机械;2011年10期
10 肖体兵,吴百海,邹大鹏,龙建军;深海采矿升沉补偿系统非线性仿真模型的建立和试验[J];中国机械工程;2004年09期
相关会议论文 前5条
1 肖体兵;吴百海;;轻载主动型升沉补偿模拟试验系统的仿真和实验研究[A];中国海洋学会2005年学术年会论文汇编[C];2005年
2 任克忍;沈大春;王定亚;肖锐;李鹏;南树歧;;海洋钻井升沉补偿系统技术分析[A];2009年石油装备学术研讨会论文专辑[C];2009年
3 姜浩;刘衍聪;张彦廷;刘振东;;钻柱升沉补偿试验台控制系统设计[A];2011年石油装备学术研讨会论文专辑[C];2011年
4 肖体兵;;深海采矿扬矿管重载半主动型升沉补偿系统控制器的研究[A];第二十七届中国控制会议论文集[C];2008年
5 吴百海;邹大鹏;冶占武;陈飞燕;肖奇军;;深海采矿长行程升沉补偿油缸的同步检测与控制[A];机床与液压学术研讨会论文集[C];2004年
相关重要报纸文章 前1条
1 澳思;OSBV公司将为Edda住宿船建过道[N];中国船舶报;2010年
相关博士学位论文 前7条
1 李世振;重型海工装备升沉补偿电液控制系统研究[D];浙江大学;2016年
2 黄鲁蒙;海洋钻井绞车升沉补偿系统设计及控制策略研究[D];中国石油大学(华东);2015年
3 肖体兵;深海采矿装置智能升沉补偿系统的研究[D];广东工业大学;2004年
4 曾智刚;波浪运动升沉补偿液压平台关键问题试验研究[D];华南理工大学;2010年
5 王海波;水下拖曳升沉补偿液压系统及其控制研究[D];浙江大学;2009年
6 姜浩;海洋浮式钻井平台钻柱升沉补偿系统研究[D];中国石油大学(华东);2013年
7 李流军;动力吸振式深海采矿主动升沉补偿系统设计及控制研究[D];中南大学;2012年
相关硕士学位论文 前10条
1 黄志鹏;大吨位沉船打捞链式同步提升平台设计[D];大连海事大学;2015年
2 贺子奇;海上作业绞车式主动升沉补偿系统设计与仿真[D];大连理工大学;2015年
3 董航;船用起重机油缸式主动升沉补偿系统研究[D];大连理工大学;2015年
4 韩雪;沉船提升被动型液压升沉补偿系统设计与仿真研究[D];大连海事大学;2015年
5 马希榕;二次调节海浪升沉补偿控制技术研究[D];北京理工大学;2016年
6 洪永;基于DDVC的超深钻井绞车型升沉补偿系统的建模和控制[D];广东工业大学;2016年
7 黄萃萍;节能型深海起重作业主动升沉补偿系统研究[D];大连理工大学;2016年
8 高磊;船舶甲板吊放设备升沉补偿系统研究[D];华中科技大学;2015年
9 白鹿;钻柱液压升沉补偿系统设计研究[D];中国石油大学;2009年
10 武光斌;复合缸式钻井升沉补偿系统的设计研究[D];中国石油大学;2010年
,本文编号:2111884
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2111884.html