含水率预测模型的改进与应用
[Abstract]:Logistic water content prediction model and Yu water content prediction model are the most simple and commonly used water content prediction models. Especially, the uncertainty of the relationship between the undetermined parameters and the dynamic and static parameters in the model makes all kinds of water control measures lack of theoretical support, and the application of water content prediction appears random. Therefore, on the basis of Willhite oil phase permeability relationship and its improved formula, four improved water content prediction models and their corresponding water phase infiltration relations are derived by combining the experimental results of Epheros. These improved water content prediction models can be transformed into Logistic water content prediction model or Yu water content prediction model under certain conditions, so they have certain generality. Based on the analysis of the variation characteristics of water content in four kinds of water cut prediction models, it is concluded that the double curve water content prediction model is suitable for fitting the "G" shape water cut and the variation law of development time. The exponential water cut prediction model is suitable for fitting the "S" shape water cut and the variation law of the development time, and the harmonic and complex exponential water cut prediction models can not only fit the "G" shape water cut and the development time variation law, but also fit the model. It can also fit the change law of "S" shape water content and development time. The improved water cut prediction model has high fitting accuracy and good effect through the application of the development blocks in the transitional zone of the north of Daqing oil field, the H2 reservoir in Pinghu oil field and the Paleogene Neogene reservoir in Yanmuxi oilfield, which is worthy of reference by other oilfields.
【作者单位】: 中国石油吐哈油田分公司勘探开发研究院;
【基金】:中国石油科技重大专项(2017E-04-07)
【分类号】:TE341
【相似文献】
相关期刊论文 前10条
1 黄伏生;赵永胜;;一种含水预测模型的补充说明[J];石油勘探与开发;1992年02期
2 赵永胜;黄秀祯;;递减曲线的多功能预测模型[J];石油勘探与开发;1985年05期
3 毛英雄;刘策;;一种改进的灰色预测模型及应用[J];天然气勘探与开发;2006年01期
4 李大昌;油气田动态灰色预测模型的选取方法[J];西南石油学院学报;1989年01期
5 宋洪才;刘爽;苏嘉;;分相流曲线预测模型的建立及应用[J];内蒙古石油化工;2011年11期
6 廉黎明;秦积舜;杨思玉;杨永智;李实;陈兴隆;;用于CO_2-原油体系的改进型黏度预测模型[J];石油勘探与开发;2014年05期
7 褚王涛;;指数函数趋势预测模型在国际原油价格中期预测中的应用[J];经济问题;2010年09期
8 陈元千;郝明强;;多峰预测模型的建立与应用[J];新疆石油地质;2013年03期
9 叶正荣,樊世忠,朱斌;多方案酸敏快速预测模型的研究[J];钻井液与完井液;1999年06期
10 刘翠玲,伞冶,王子才,孙新波;高温高压釜内介质温度的预测模型及应用[J];仪表技术与传感器;2000年02期
相关会议论文 前1条
1 程康;姜胜;黄伟;;滚动开发区块产量预测思路探讨[A];创新·质量·低碳·可持续发展——第十届宁夏青年科学家论坛石化专题论坛论文集[C];2014年
相关重要报纸文章 前1条
1 特约记者 刘京涛;华东化工销售员工设计价格预测模型见成效[N];中国石油报;2010年
相关博士学位论文 前1条
1 马新;基于灰色系统与核方法的油藏动态预测方法研究[D];西南石油大学;2016年
相关硕士学位论文 前2条
1 潘斐;改进型灰色预测模型在中石化油气成本预测中的应用研究[D];中国石油大学;2011年
2 任海燕;酸水系统碳钢冲蚀规律及预测方法研究[D];浙江理工大学;2015年
,本文编号:2133290
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2133290.html