油井结蜡参数检测与智能判别方法研究
[Abstract]:Petroleum is an indispensable non-renewable energy in the world today. It is very important to improve the efficiency of oil collection and identify the fault of oil recovery equipment system in time. At present, the rod pump pumping system is used to collect oil in most oilfields, which has the advantages of simple operation and low cost. In the process of exploitation, the equipment often appears wax deposit fault, which makes the load of pumping unit increase and the electric current of motor increase, which seriously affects the oil recovery efficiency of the rod pumping system. At present, there are many methods to identify wax deposit fault, but the accuracy is not ideal. In this paper, the support vector machine (SVM) method based on statistical learning theory is used to identify waxing faults in rod pumping system. This method has strong generalization ability and is especially suitable for pattern recognition with small samples. The main contents of this paper are as follows: (1) the background of fault diagnosis of rod pumping system at home and abroad is introduced, the structure and working principle of rod pumping system are expounded, and the formation of indicator diagram is studied. The load parameters of oil well are extracted by load sensor. The indicator diagram contains a lot of information and can be used to understand the production condition of the oil well according to its image characteristics. Therefore, the indicator diagram is selected as the basis for fault diagnosis of the oil well. (2) after collecting the surface indicator diagram, the mathematical model of the system is established. If the surface indicator diagram is converted into the underground pump work diagram, it is more helpful to understand the downhole working conditions. The required pump power diagram is obtained by using MATLAB software. Then the pump work graph is processed by MATLAB image, and the specific type of image is obtained. The threshold value is segmented by using the great law, and the optimal threshold value is obtained. The image is transformed into a binary image by using the expansion, corrosion and thinning of mathematical morphology. The shrinkage is processed and the desired image is obtained. (3) the extracted parameters should be distinguished, clustered and independent, and so on. The moment invariant theory is used to extract 7 invariant moment parameters of pump power diagram to describe various oil well faults, and to provide data samples for classifier pattern recognition. (4) selecting support vector machine (SVM) to identify faults of sucker rod pumping system intelligently. Especially the waxing fault. The support vector machine is theoretically analyzed and simulated by MATLAB software. In order to obtain better recognition effect, the parameters of support vector machine are optimized by cross validation, particle swarm optimization and genetic algorithm respectively. Because different kernel functions have different recognition effects, the recognition effects of different kernel functions are compared, and the optimal parameters are found to achieve a good intelligent recognition effect.
【学位授予单位】:沈阳工业大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE358.2
【参考文献】
相关期刊论文 前10条
1 李杰;彭月英;元昌安;林墨;王仁民;;基于数学形态学细化算法的图像边缘细化[J];计算机应用;2012年02期
2 刘晓娟;潘宏侠;;基于EMD分解和支持向量机的齿轮箱故障诊断与研究[J];柴油机设计与制造;2011年03期
3 石岩;王茂盛;;沥青-胶质-石蜡沉积物在采油系统不同工艺设备上的形成特点[J];国外油田工程;2009年06期
4 黄良力;;多分类支撑向量机综述[J];中国水运(学术版);2006年05期
5 郭辽原;徐登霆;蒋焱;杜春安;张锡洲;;微生物单井防蜡技术研究与应用[J];石油天然气学报(江汉石油学院学报);2006年02期
6 王存睿,段晓东,刘向东,周福才;改进的基本粒子群优化算法[J];计算机工程;2004年21期
7 汪光阳,胡伟莉,张雷,张辉宜;专家系统及其相关技术的发展[J];安徽工业大学学报(自然科学版);2004年03期
8 陈军;液哨式声波发生器在油田防垢防蜡方面的应用[J];油气地质与采收率;2004年03期
9 许建华,张学工,李衍达;支持向量机的新发展[J];控制与决策;2004年05期
10 徐义田,王来生,张好治,孙宝山;基于SVM的分类算法与聚类分析[J];烟台大学学报(自然科学与工程版);2004年01期
相关硕士学位论文 前9条
1 仇治学;基于示功图分析的有杆泵抽油井故障诊断方法研究[D];东北大学;2011年
2 王科科;远程监测抽油机井工况智能诊断技术[D];中国石油大学;2009年
3 杨洋;基于示功图分析的远程抽油机自诊断系统[D];大连理工大学;2008年
4 曹兆龙;基于支持向量机的多分类算法研究[D];华东师范大学;2007年
5 冯娜娜;抽油机井泵况智能诊断方法研究[D];燕山大学;2007年
6 王昱;有杆泵抽油井工况远程监测与故障诊断系统研究[D];武汉理工大学;2006年
7 张冬艳;双作用分层抽油泵故障诊断技术[D];大庆石油学院;2004年
8 赵长波;柔性杆抽油系统优化设计及应用[D];大连理工大学;2002年
9 孙玉龙;分层有杆抽油系统井下故障诊断技术[D];浙江大学;2001年
,本文编号:2152393
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2152393.html