盐岩非线性流变性态及地下复杂溶腔变形数值分析
[Abstract]:In view of the large number of salt rock layers in Pingdingshan salt field, the single layer thickness is thin and the mudstone interlayer is many, the equivalent composite element is established to replace the interbedded salt rock. The three-dimensional numerical simulation of the underground cavity in the Ma Zhuang coalfield is studied by ABAQUS software. The nonlinear rheological behavior of surrounding rock in the surrounding plastic zone and the volume reduction of the cavity are discussed under different internal pressure. The results show that: (1) the equivalent composite element has good numerical stability in the steady state of creep, and the mudstone can effectively limit the scope of the viscoplastic zone and the development of the displacement of the surrounding rock to the cave. (2) under the confining pressure (8 MPa), the interbedded salt rock unit has the characteristics of the linear small deformation, the volume contraction rate of the cavity and the duration of the creep. The minimum values are 3% and 2.5 A, respectively. With the increase of internal pressure (8~12 MPa), the interbedded salt rock unit begins to show nonlinear creep, but after a short time (2.5 A), the volume contraction rate is gradually stable to a small value, about 3.5%. With the rapid decrease of the internal pressure (less than 4 MPa), the surrounding rock salt rock gradually presents nonlinear large deformation characteristics. The steady creep time increases, the creep rate increases, and the creep of the surrounding rock increases steadily after 5 a. (3) the viscosity coefficient in the surrounding rock of the plastic zone increases with time, reflecting the more stable deformation trend of the interbedded salt rock in the process of gas storage operation. Therefore, the gas storage pressure should be controlled in a reasonable range (4~12 MPa), especially in the actual operation. It is necessary to reduce the operating time of the storage under the smaller internal pressure.
【作者单位】: 郑州大学水利与环境学院;河南省煤田地质局资源环境调查中心;
【基金】:国家自然科学基金资助项目(41272339)
【分类号】:TE972.2
【相似文献】
相关期刊论文 前7条
1 姜德义,任松,刘新荣,郭微;岩盐溶腔稳定性控制研究[J];中国井矿盐;2005年03期
2 愪保平;徐素国;赵阳升;;盐岩溶腔油气储库建造研究[J];山西煤炭;2006年01期
3 姜德义,任松,刘新荣,刘保县;岩盐溶腔顶板稳定性突变理论分析[J];岩土力学;2005年07期
4 宋传亮;谭羽非;;注采与储存过程储油盐穴溶腔内温度变化研究[J];哈尔滨商业大学学报(自然科学版);2010年04期
5 刘正和;;盐层内油气储库建造稳定性建模分析[J];科技情报开发与经济;2007年16期
6 阳佳中,杨骏六;岩盐溶腔渗透率研究的一些进展[J];西南民族大学学报(自然科学版);2004年01期
7 班凡生;袁光杰;赵志成;;盐穴储气库溶腔夹层应力分布规律[J];科技导报;2014年16期
相关会议论文 前1条
1 李龙;杨海军;刘玉刚;方亮;;金坛盐穴储气库新溶腔井注气排卤情况分析[A];青年人才与石化产业创新发展——第七届宁夏青年科学家论坛论文集[C];2011年
相关博士学位论文 前2条
1 郝铁生;层状盐岩水平储库破坏机理及稳定性研究[D];太原理工大学;2016年
2 万玉金;盐层储气库溶腔形状控制模拟技术研究[D];中国地质大学(北京);2005年
相关硕士学位论文 前4条
1 王英杰;岩盐储气库溶腔模型及其建腔工艺研究[D];武汉轻工大学;2014年
2 岳广义;盐岩溶腔水平储库溶解建造过程实验与数值模拟[D];太原理工大学;2012年
3 田源;盐穴型地下储气库溶腔形态变化规律及安全控制技术研究[D];西南石油大学;2014年
4 孟涛;盐岩水平溶腔储库建造与运行稳定性数值模拟研究[D];太原理工大学;2013年
,本文编号:2166523
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2166523.html