当前位置:主页 > 科技论文 > 石油论文 >

接触式石油管螺纹测量仪控制系统的设计与研究

发布时间:2018-08-06 13:29
【摘要】:石油管是石油、天然气开采和运输过程中的主要载体,石油管螺纹测量是检测石油管是否安全、可靠的主要手段之一。目前,常用的石油管螺纹检测仪器有通止规、测长仪、坐标测量仪和影像测量仪等,但是这些仪器在实际使用中多存在测量精度低、测量参数单一、测量效率低、易受环境影响等问题。因此,本文利用现代微型处理器和高精度触发测头开发出了接触式石油管螺纹测量仪的控制系统,实现石油管螺纹轮廓的自动扫描和螺距、牙型角和锥度参数的综合测量。主要的研究内容如下:(1)分析了API SPEC 5B和GB/T 9253.2-1999相关标准的石油管螺纹测量要求,提出了控制系统的性能参数要求,设计了测量仪的机械主体结构,规划了测量仪控制系统的总体结构。(2)以IMC3042运动控制卡作为系统的控制核心,实现了系统的运动控制、数据采集以及辅助测量等功能。结合系统的控制性能要求,选择了满足要求的传动系统硬件、测量反馈装置(光栅尺)和测头的型号,设计了各硬件与运动控制卡的连接电路。(3)在Labview编程环境下完成了控制系统的软件编程,软件系统包括人机界面、系统初始化、运动控制、数据采集、数据处理和辅助功能等模块。(4)利用IMC运动控制卡的多轴控制功能函数和开关测头信号规划了测头的运动路径,完成了智能加减速规划算法和步进闭环系统控制的相关程序编制。(5)论述了数据处理和参数计算过程。对扫描获取的数据,首先利用FFT频谱分析方法进行了有效性判断,然后利用稳健高斯回归滤波和数据插值方法进行了均匀密化,最后按曲线拟合方法求取了螺纹参数。(6)对测量仪进行了误差分析和补偿,并在课题组研制的样机和三丰坐标测量机上,对不同规格、不同类型的石油管螺纹进行对比测量实验。实验结果表明,测量结果满足测量的精度要求。
[Abstract]:Petroleum pipe is the main carrier in the process of oil and natural gas exploitation and transportation. The thread measurement of oil pipe is one of the main methods to detect the safety and reliability of oil pipe. At present, the commonly used oil pipe thread detection instruments include general stop gauge, length measuring instrument, coordinate measuring instrument and image measuring instrument, etc. However, most of these instruments have low measuring precision, single measuring parameters and low measuring efficiency in practical use. Vulnerable to environmental impact and other issues. Therefore, a control system of contact oil pipe thread measuring instrument is developed by using modern microprocessors and high precision trigger probe, which can realize the automatic scanning of oil pipe thread profile and the comprehensive measurement of pitch, tooth shape angle and taper parameter. The main research contents are as follows: (1) the requirements of API SPEC 5B and GB/T 9253.2-1999 are analyzed, the performance parameters of the control system are put forward, and the mechanical structure of the measuring instrument is designed. The overall structure of the measuring instrument control system is planned. (2) the IMC3042 motion control card is used as the control core of the system, and the system motion control, data acquisition and auxiliary measurement functions are realized. According to the control performance requirements of the system, the hardware of the transmission system, the measuring feedback device (grating ruler) and the type of the probe are selected. The connection circuit between the hardware and the motion control card is designed. (3) the software programming of the control system is completed in the Labview programming environment. The software system includes man-machine interface, system initialization, motion control, data acquisition. Data processing and auxiliary function modules. (4) using the multi-axis control function of the IMC motion control card and the switch probe signal, the motion path of the probe is planned. The intelligent acceleration and deceleration programming algorithm and the programming of step closed loop system control are completed. (5) the process of data processing and parameter calculation is discussed. The validity of the data obtained by scanning is judged by FFT spectrum analysis method, and then uniform density is obtained by robust Gao Si regression filtering and data interpolation method. Finally, the thread parameters are obtained according to the curve fitting method. (6) error analysis and compensation of the measuring instrument are carried out, and the comparative measurement experiments on different specifications and types of oil pipe threads are carried out on the prototype and Sanfeng coordinate measuring machine developed by our research group. The experimental results show that the measurement results meet the requirements of accuracy.
【学位授予单位】:陕西理工大学
【学位级别】:硕士
【学位授予年份】:2017
【分类号】:TE973.6;TP273

【参考文献】

相关期刊论文 前10条

1 袁红兵;谭鑫;赵动动;;基于PC和运动控制卡的数控雕铣教学实验系统开发[J];机床与液压;2015年19期

2 林继;;基于PCI总线的多轴运动控制器设计[J];数字技术与应用;2015年10期

3 孙孟;陈正寿;崔振东;陆伟明;沈志华;;基于FFT的信号分解方法及其工程应用[J];浙江海洋学院学报(自然科学版);2015年04期

4 严兰兰;韩旭里;应正卫;;集逼近插值于一体的分段三次多项式曲线曲面[J];计算机应用研究;2015年08期

5 朱贺贺;赵东标;沈建清;贡国云;;接触式螺纹测量仪的六自由度位姿误差的测量与补偿[J];机械与电子;2015年03期

6 郭晓聪;牛永生;赵惠英;任东旭;;光栅线位移传感器精度的影响因素分析[J];制造业自动化;2015年03期

7 侯东明;陈文冬;高兴华;;内螺纹测量方法研究[J];装备制造技术;2015年01期

8 于殿泓;张路;李琳;;基于激光三角法的石油管螺纹轮廓测量误差分析及处理[J];西安理工大学学报;2014年03期

9 黄永章;张宝生;陈福来;祝宝利;;典型跨国原油管道交接计量对比述评[J];石油化工设备技术;2014年04期

10 周勇;王国贤;曹小华;;一种滚珠丝杠扭转振动模态的测量与分析方法[J];中国机械工程;2013年23期

相关会议论文 前1条

1 冯耀荣;杨龙;李鹤林;;石油管失效分析预测预防与完整性管理[A];2011年全国失效分析学术会议论文集[C];2011年

相关硕士学位论文 前10条

1 杜聪;精密螺纹图像测量系统研究[D];中北大学;2015年

2 张志强;滚珠丝杠摩擦力矩动态检测系统的研制[D];厦门大学;2014年

3 勾鹤;基于逆向工程的复杂人机曲面的建模和优化方法研究[D];内蒙古工业大学;2013年

4 张兆凤;基于图像处理的圆锥螺纹非接触检测技术研究[D];浙江大学;2013年

5 任俊刚;叶片型面测量原理与技术研究[D];沈阳工业大学;2012年

6 白林;基于激光位移检测技术的螺纹检测软件系统设计与开发[D];电子科技大学;2012年

7 张继承;极坐标法测量渐开线齿轮关键技术研究[D];天津大学;2012年

8 丁亮亮;高精度单针接触式螺纹测量仪的设计与研究[D];南京航空航天大学;2011年

9 范一保;高精度接触式螺纹测量仪软件系统的设计与开发[D];南京航空航天大学;2011年

10 黄灿灿;基于PLC的脉冲磁体绕线机伺服电机控制系统的设计与实现[D];华中科技大学;2011年



本文编号:2167878

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2167878.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户9117b***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com