燃气轮机余锅及烟气余热制冷联合系统的优化设计
[Abstract]:Gas turbines are favored for their small investment, flexibility, reliability and good environmental protection performance, which greatly promote the rapid development of gas turbine combined cycle (Gas Turbine Combined cycle technology. The combined system of flue gas waste heat absorption refrigeration and cooling system of gas turbine waste heat boiler has been widely paid attention to by academic and engineering circles because of its high thermal efficiency due to its ability to recover the waste heat from spent gas of gas turbine to a large extent. In this paper, the fixed thermoelectric cooling demand (44MW 1.0 MPA steam 65t / h 2000kW cooling capacity) of a refinery is taken as the object of this paper. The combined system of lithium bromide absorption refrigeration and cooling system with separated heat pipe of flue gas from waste gas boiler with single pressure and no supplementary combustion of gas turbine is taken as the object of this paper, and the equipment situation is weighed. The optimal design of the combined system was carried out under the conditions of 150 ~ 200 掳C exhaust smoke from the residual boiler, three subsystems of the separated heat pipe flue gas waste heat generator and three subsystems, namely, the compartmentalized gas turbine, the single effect lithium bromide refrigeration unit and the separated heat pipe flue gas waste heat generator. Firstly, the mechanism model of the three subsystems mentioned above is established, and then the number of independent variables of the three subsystems is determined by the analysis of degrees of freedom (respectively 4 / 8 / 9), and the corresponding optimal design variables are selected according to the engineering constraints and design convenience. Then the objective function is defined as annual total operating cost (TAC),) thermal coefficient per unit area (A/COP) and generator total heat transfer coefficient (UH),). Then the MATLAB genetic algorithm program of three subsystems is developed to optimize the solution. Under the corresponding optimal design condition, the minimum TAC of the first subsystem is 1283 脳 10 4 / y, the optimal A/COP of the second subsystem is 729.32 (corresponding to A/COP 0.7252 An 528.9 m2), and the optimal 2=32.0W/ (m C) HU 脳 掳of the third subsystem is obtained by genetic algorithm optimization.
【学位授予单位】:华南理工大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE96
【参考文献】
相关期刊论文 前10条
1 岳伟挺,李素芬;联合循环余热锅炉蒸汽参数的优化分析[J];动力工程;2002年06期
2 邓世敏,危师让,林万超;联合循环蒸汽系统参数分析研究[J];动力工程;1998年04期
3 胡圣武;;基于Matlab的空间分析[J];地理空间信息;2012年02期
4 刘忠楼,杨震,马国栋,张建龙;配PG9171E燃机余热锅炉主蒸汽参数的优化计算[J];锅炉技术;2002年09期
5 庄德文;张航;;基于MATLAB大学物理多媒体课件制作[J];中国科教创新导刊;2012年02期
6 温立,李正阳,王丽莉;燃气—蒸汽联合循环余热锅炉参数优化[J];哈尔滨理工大学学报;2003年03期
7 戚涛;张志勇;;天然气发电机烟气余热利用技术在油气田场站的应用[J];节能;2006年10期
8 杨振民,唐夕山,金苏敏;热管废热发生器烟气流场的数值模拟[J];南京工业大学学报(自然科学版);2005年03期
9 焦树建;论余热锅炉型联合循环中双压再热式余热锅炉的特性与汽轮机特性的优化匹配问题[J];燃气轮机技术;2001年02期
10 孙涛;赵天燕;;我国能源消耗碳排放量测度及其趋势研究[J];审计与经济研究;2014年02期
相关硕士学位论文 前8条
1 陶玉灵;烟气驱动的热管废热溴化锂制冷机的计算机模拟[D];南京工业大学;2003年
2 鲁金辉;70kt/a已内酰胺环已酮肟化过程的计算机模拟[D];湖南大学;2004年
3 杨振民;热管废热溴化锂制冷机组的优化设计研究[D];南京工业大学;2005年
4 朱庆生;基于IIS和ASP技术的PBL智能型助学网站的研究[D];合肥工业大学;2006年
5 王银年;遗传算法的研究与应用[D];江南大学;2009年
6 姬北英;多点移动无线光通信方案与仿真研究[D];烟台大学;2009年
7 焦华;第二类吸收式热泵在炼厂余热领域的应用[D];大连理工大学;2012年
8 姚振宇;加热炉前置燃气轮机方案研究[D];华南理工大学;2014年
,本文编号:2172622
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2172622.html