连续油管椭圆度脉冲涡流位移传感测量技术
[Abstract]:The amount of continuous tubing has increased rapidly with the development of shale gas in recent years. In order to ensure the safety in the process of use, on-line monitoring and detection is particularly important. The common defects of continuous tubing are surface pitting, sulfide stress cracking, fatigue pitting, mechanical indentation and ellipticity change. From the definition of ellipticity, the measurement of ellipticity is essentially transformed into the measurement of diameter. The ellipticity measurement can be obtained by measuring the distance between the continuous tubing and the sensor. Based on the measurement principle of pulsed eddy current displacement sensor, the coil response model is established and a method to eliminate oscillation is proposed. The typical absolute and differential pulse eddy current signals are verified by the self-made sensor test, the signals of different structure pulse eddy current displacement sensors are compared, the concentric differential vertical structure sensors are selected as displacement sensors, the core is compared, Adding 45 iron and steel core, adding ferrite core three kinds of sensors, adding ferrite core polymagnetic sensor peak value change is the biggest. According to the static calibration of the self-made pulsed eddy current displacement sensor, the nonlinear monotone decreasing relation between the displacement and the peak value change is obtained, which is fitted by polynomial fitting and exponential fitting. The displacement and voltage values of the sensor are fitted by three methods of piecewise linear interpolation. The best fitting method is obtained by SSE (variance) S-quare (determining coefficient) and RMSE (standard deviation). According to the measurement method, the array pulse eddy current ranging signal system is designed, that is, hardware design and software design. The hardware system is divided into excitation part and receiving part. The excitation part includes the design of pulse source, the design of voltage amplifier circuit and the design of power amplifier circuit; the receiving part includes the design of amplifier circuit, the design of filter circuit and the design of display circuit. The system software includes the design of the pulse signal generating program and the design of the data processing program and the design of the LCD display program. A test platform is built to test the pulse eddy current ranging system.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE931.2
【相似文献】
相关期刊论文 前10条
1 尹慧琳;王磊;农静;刘世杭;;用于脉冲涡流检测的新型数据处理方法[J];现代科学仪器;2010年02期
2 彭学文;付跃文;;脉冲涡流检测信号的消噪处理[J];计算机工程与设计;2010年16期
3 杨宾峰;罗飞路;;脉冲涡流检测系统影响因素分析[J];无损检测;2008年02期
4 徐志远;武新军;黄琛;康宜华;;有限厚铁磁性试件脉冲涡流响应研究[J];华中科技大学学报(自然科学版);2011年06期
5 郑中兴;韩志刚;;穿透保温层和防腐层的脉冲涡流壁厚检测[J];无损探伤;2008年01期
6 潘孟春;何峗泽;罗飞路;;基于谱分析的脉冲涡流缺陷3D分类识别技术[J];仪器仪表学报;2010年09期
7 徐志远;武新军;黄琛;康宜华;;激励参数和试件电磁参数对脉冲涡流检测影响的仿真分析[J];无损检测;2011年06期
8 傅迎光;王健;孙明璇;刘再斌;范智勇;石坤;;有包覆层铁磁试件的脉冲涡流检测[J];测试技术学报;2013年02期
9 齐勇;刘相彪;李勇;陈振茂;李炜昕;;基于磁场梯度测量的脉冲涡流检测关键技术研究[J];中国机械工程;2014年08期
10 周德强;尤丽华;张秋菊;郑莎;吴佳龙;;碳纤维增强复合材料脉冲涡流无损检测仿真与实验研究[J];传感技术学报;2014年02期
相关博士学位论文 前6条
1 杨宾峰;脉冲涡流无损检测若干关键技术研究[D];国防科学技术大学;2006年
2 徐志远;带包覆层管道壁厚减薄脉冲涡流检测理论与方法[D];华中科技大学;2012年
3 邱选兵;基于脉冲涡流连铸钢坯无损检测理论与实验研究[D];太原科技大学;2013年
4 周德强;航空铝合金缺陷及应力脉冲涡流无损检测研究[D];南京航空航天大学;2010年
5 黄琛;铁磁性构件脉冲涡流测厚理论与仪器[D];华中科技大学;2011年
6 陈天璐;海底管道传感器阵列损伤信息的提取和融合研究[D];上海交通大学;2007年
相关硕士学位论文 前10条
1 潘辉;铁磁性构件的脉冲涡流无损检测方法研究[D];江苏理工学院;2015年
2 陈骁;基于脉冲涡流技术的多层导电结构内层缺陷检测研究[D];浙江大学;2015年
3 李鸣;脉冲涡流检测有限元仿真分析及检测系统设计研究[D];昆明理工大学;2015年
4 苏斌;脉冲式涡流检测系统激励信号源研制[D];电子科技大学;2014年
5 晏越;提离效应对脉冲涡流检测系统影响及其补偿方法研究[D];电子科技大学;2014年
6 刘幸马可;基于脉冲涡流的铝合金板材缺陷检测方法研究[D];电子科技大学;2014年
7 王太平;压水堆不锈钢覆面焊缝缺陷的脉冲涡流热成像检测技术的研究[D];电子科技大学;2015年
8 蔚道祥;带包覆层铁磁性管道内部腐蚀脉冲涡流检测研究[D];南昌航空大学;2015年
9 刘鑫华;含有缺陷的脉冲涡流检测系统的数值建模方法研究[D];电子科技大学;2014年
10 李朝夕;基于特征量分析的脉冲涡流检测技术研究[D];南昌航空大学;2015年
,本文编号:2183981
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2183981.html