苏里格致密砂岩渗流分析及压裂产能预测方法研究
[Abstract]:Tight sandstone gas reservoir is currently the most important unconventional natural gas field with exploration and development significance. Due to the low porosity, low permeability, low gas saturation and complex seepage mechanism of tight sandstone, it is difficult to establish a high precision pore and permeability saturation interpretation model of reservoir. It is difficult to evaluate the gas-bearing property of tight sandstone and the influence of fracturing measures on formation in production brings a series of challenges to the prediction of reservoir productivity after pressure in tight sandstone gas reservoir. The analysis of percolation characteristics of tight sandstone reservoir, the establishment of high precision interpretation model, the correct evaluation of gas-bearing property, the accurate prediction of reservoir productivity, the analysis of gas production and distribution of water production in the study area are helpful to guide the rational development of tight sandstone oil and gas field. This paper focuses on reservoir evaluation and fracturing productivity prediction based on tight sandstone gas reservoir of Bo8 member of Permian in Sulige area. In this paper, the reservoir characteristics and petrological characteristics of tight sandstone in Sulige area are studied. The effects of mineral content on productivity and gas logging characteristics are analyzed. The effects of porosity, permeability, gas saturation and relative permeability of gas and water on the permeability of tight sandstone are analyzed from the macroscopic point of view. On the basis of empirical statistics, a neural network method was developed to establish an interpretation model of pore and osmotic saturation. Elman_Adaboost strong predictor is used to calculate porosity and SVR is used to calculate permeability and saturation. Based on the chart method of conventional logging curve, the qualitative evaluation index of gas-bearing property is established, and the quantitative evaluation index of gas-bearing property is established by means of mathematical means, I. E. wavelet analysis GRNN network curve reconstruction method. Finally, the influencing factors of fracturing productivity and the prediction of fracturing productivity are analyzed synthetically. Based on the theory of fracturing productivity, the influencing factors of fracturing productivity are analyzed. The effects of logging parameters and fracturing operation parameters on fracturing productivity are discussed emphatically. The main influencing factors are selected by using R-type principal component analysis method to reduce the dimension of the factors. Based on the principal factor selected by principal component analysis (PCA), a single layer productivity prediction model is established by using GRNN network. Based on the single-layer productivity prediction model, the GRNN single-point productivity prediction model is established, and the GRNN single-point productivity prediction model is used to predict the tight sandstone gas reservoir in Sulige area. The gas production and water production of section 8 in Sulige area were analyzed, and the distribution characteristics of gas production and water production in section 8 of Sulige box were analyzed.
【学位授予单位】:吉林大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE312
【参考文献】
相关期刊论文 前10条
1 许延清,李舟波,陆敬安;利用测井资料预测油气储层产能的方法研究[J];长春科技大学学报;1999年02期
2 高建华,李瑞,王改芳,杨光惠;用测井参数预测多层合试产能的方法[J];成都理工学院学报;2002年03期
3 谭成仟,宋子齐,吴少波;灰色关联分析在辽河小洼油田储层油气产能评价中的应用[J];测井技术;2001年02期
4 张莹;潘保芝;;基于主成分分析的SOM神经网络在火山岩岩性识别中的应用[J];测井技术;2009年06期
5 张丽华;潘保芝;庄华;郭立新;李庆峰;赵小青;;低孔隙度低渗透率储层压裂后产能测井预测方法研究[J];测井技术;2012年01期
6 岳文正,陶果;小波变换在识别储层流体性质中的应用[J];地球物理学报;2003年06期
7 张莹;潘保芝;何胜林;张培珍;;基于小波分析的储层流体性质识别[J];地球物理学进展;2012年06期
8 潘保芝;石玉江;蒋必辞;刘丹;张海涛;郭宇航;杨小明;;致密砂岩气层压裂产能及等级预测方法[J];吉林大学学报(地球科学版);2015年02期
9 田冷;何顺利;顾岱鸿;张红玲;;改进BP神经网络模型在长庆气田产能预测中的应用[J];石油天然气学报;2008年05期
10 潘华贤;程国建;蔡磊;;极限学习机与支持向量机在储层渗透率预测中的对比研究[J];计算机工程与科学;2010年02期
相关博士学位论文 前3条
1 叶礼友;川中须家河组低渗砂岩气藏渗流机理及储层评价研究[D];中国科学院研究生院(渗流流体力学研究所);2011年
2 张海涛;苏里格地区有效储层测井识别方法研究[D];西北大学;2010年
3 王飞;交叉偶极声波测井资料处理及在致密气层评价中的应用研究[D];吉林大学;2013年
,本文编号:2199648
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2199648.html