涪陵地区页岩气井造斜井段提速研究
[Abstract]:Shale gas, as a new oil and gas resource, has greatly changed the existing energy structure and expanded the field of oil and gas energy development. Shale gas is not a newly discovered oil and gas resource in recent years. In the past drilling exploration and development, a small amount of gas spills out when drilling shale formation, but it is not a valuable gas source. Most of the gas-producing shale rocks are widely distributed, thick and generally gas-bearing, which enable shale gas wells to produce gas steadily for a long time. However, the permeability of shale gas reservoirs is low and it is difficult to exploit. With the development of drilling technology, horizontal well technology and hydraulic fracturing technology, as key technologies of shale gas development, accelerate shale gas generation. In order to speed up the development of shale gas exploration and development technology, Chongqing Fuling shale gas project has been taken as a national demonstration area to form a complete set of technical measures for efficient shale gas development. In order to ensure the safe and efficient drilling, Fuling block has implemented a variety of drilling measures. This paper mainly studies the problem of increasing the speed of Fuling inclined section. The speed-increasing drilling technology used in the inclined section is mainly composite drilling technology and the air for the leakage problem. Foam directional drilling technology, in addition to the introduction of speed-increasing tools to improve drilling efficiency in the deviated section. Composite drilling technology through increasing drilling speed to enhance drilling parameters to enhance rock breaking energy, Fuling area has been used as the main speed-increasing measures, speed-increasing effect is significant. In order to coordinate with the use of composite drilling technology in the deviated section, reasonable. The trajectory control ability meets the requirements by optimizing the trajectory design by choosing the build-up rate, increasing the composite drilling efficiency and reducing the sliding drilling efficiency, thus increasing the drilling speed in the build-up section. The working strength of the screw is increased to a great extent, and the life of the screw is shorter. Once the screw fails, it needs to be replaced by taking-off drilling, which greatly increases the drilling interruption time. Therefore, the screw becomes a vulnerable part in the drilling of the deviating section. By comparison and analysis, the screw with equal wall thickness is more stable than the conventional one, and the life of the screw is longer. In addition, reasonable construction rules and measures are important means to improve the life of the screw. Hydraulic oscillator and hydraulic propeller have been used in this area. According to the analysis of drilling effect, the use of hydraulic oscillator is better, and the decrease is obvious when drilling in wellbore section. According to Fuling geological conditions, the feasibility of air foam drilling technology in Fuling Block is analyzed. It is a precondition to implement air drilling technology to master water and gas production in Fuling Block. Core analysis shows that the rock has developed horizontal fractures and no vertical fractures. The compressive strength curve of Jialingjiang-Xiaoheba formation is significantly higher than the collapse curve, and the borehole wall of air foam drilling is more stable. During the drilling process, the main problems of air foam drilling are serious wear of drill pipe and insufficient rock-carrying capacity. Aiming at the problem of rock-carrying, this paper calculates the minimum gas injection rate of air foam drilling by using the modified Angel model, which provides an effective reference for drilling operation.
【学位授予单位】:长江大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE24
【相似文献】
相关期刊论文 前10条
1 胡文瑞;;迎接页岩气发展的春天[J];中国石油石化;2009年11期
2 谭蓉蓉;;美国页岩气工业始于1821年[J];天然气工业;2009年05期
3 谭蓉蓉;;中国页岩气技术国际研讨会在长江大学召开[J];天然气工业;2009年05期
4 董立;;我国需要尽快开展页岩气的勘探开发[J];石油与天然气地质;2009年02期
5 ;綦江页岩气开发项目启动[J];精细化工原料及中间体;2009年09期
6 本刊编辑部;;我国研究人员发现页岩气的直接存在[J];天然气工业;2009年09期
7 李立;;中国正式实施新型能源页岩气开发[J];石油钻采工艺;2009年05期
8 ;我国首个页岩气开发项目在綦江启动[J];吐哈油气;2009年03期
9 王立彬;;中国启动页岩气资源勘查[J];国外测井技术;2009年05期
10 安晓璇;黄文辉;刘思宇;江怀友;;页岩气资源分布、开发现状及展望[J];资源与产业;2010年02期
相关会议论文 前10条
1 陈明;;世界页岩气勘探开发现状及面临的环境问题[A];第二届全国特殊气藏开发技术研讨会优秀论文集[C];2013年
2 叶舒阳;;页岩气开发对环境的影响及对策[A];浙江省经济欠发达地区低碳发展综合研讨会论文集[C];2013年
3 王玉芳;包书景;张宏达;葛明娜;王劲铸;孟凡洋;任收麦;;国外页岩气勘查开发进展[A];中国地质学会2013年学术年会论文摘要汇编——S13石油天然气、非常规能源勘探开发理论与技术分会场[C];2013年
4 吴西顺;;世界各国页岩气政策综述[A];中国地质学会2013年学术年会论文摘要汇编——S01地质科技与国土资源管理科学研讨分会场[C];2013年
5 ;中国页岩气勘探开发现状及前景展望[A];“宝塔油气”杯第四届天然气净化、液化、储运与综合利用技术交流会暨LNG国产化新技术新设备展示会论文集[C];2014年
6 林斌;郭巍;赵肖冰;曹瀚升;王少华;;页岩气资源评价方法:概率体积法在三江盆地古生代页岩气中的应用[A];中国矿物岩石地球化学学会第14届学术年会论文摘要专辑[C];2013年
7 印兴耀;吴国忱;;页岩气储层地震评价[A];中国地球物理2013——第二十三专题论文集[C];2013年
8 蔡启宏;傅子云;;地震频率信息在页岩气勘探开发中应用的可能性分析[A];中国地球物理2013——第二十三专题论文集[C];2013年
9 刘禹;王常斌;文建军;宋付权;;页岩气渗流中的力学模型分析[A];第二十五届全国水动力学研讨会暨第十二届全国水动力学学术会议文集(上册)[C];2013年
10 滕吉文;刘有山;;中国页岩气成藏和潜在产能与对环境的污染分析[A];中国科学院地质与地球物理研究所2013年度(第13届)学术论文汇编——特提斯研究中心[C];2014年
相关重要报纸文章 前10条
1 王巧然;中国石油储备页岩气开发技术[N];中国石油报;2008年
2 中国地质大学(北京)能源学院教授 张金川;中国应大力开发页岩气[N];中国能源报;2009年
3 林刚;我国首个页岩气合作开发项目已实施[N];中国企业报;2009年
4 李冰 李婧婧;页岩气藏:尚待开发的处女地[N];中国石化报;2009年
5 本报记者 胡学萃;页岩气:有望改变我国能源格局[N];中国能源报;2009年
6 胡文瑞;页岩气:“鸡肋”变“牛排”[N];中国经济导报;2010年
7 本报记者 高慧丽;唤醒沉睡的页岩气[N];地质勘查导报;2010年
8 李慧;页岩气并非亚洲首选[N];中国能源报;2010年
9 本报记者 王海霞;页岩气勘探热潮席卷欧洲[N];中国能源报;2010年
10 特约记者 刘楠;我国页岩气开采将从重庆起步[N];中国化工报;2010年
相关博士学位论文 前10条
1 郭为;页岩储层特征与渗流机理研究[D];中国科学院研究生院(渗流流体力学研究所);2014年
2 金吉能;页岩气地球物理建模分析[D];长江大学;2015年
3 赵群;蜀南及邻区海相页岩气成藏主控因素及有利目标优选[D];中国地质大学(北京);2013年
4 李建青;中国南方海相页岩气选区评价体系研究[D];西北大学;2012年
5 李亚男;页岩气储层测井评价及其应用[D];中国矿业大学(北京);2014年
6 翟常博;川东南綦江—仁怀地区页岩气成,
本文编号:2221496
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2221496.html