当前位置:主页 > 科技论文 > 石油论文 >

沉箱式柱状旋流气液分离器的分离性能研究

发布时间:2018-11-03 21:19
【摘要】:沉箱式柱状旋流分离器是一种拟应用在海底的分离器,兼顾两相和三相分离功能。本文着重研究其两相分离功能,以入口管下倾预分离、柱状旋流主分离、卧式沉箱重力辅助分离的分离机制进行分离器的设计;以多相旋流分离理论为指导,以数值模拟与试验测试为手段,对分离器主分离区流场分布特点及结构影响因素进行了深入分析。主要研究内容与结论如下:分离器主分离区的模拟研究表明切向速度呈现兰金组合涡结构特征,轴向速度整体呈现“倒V”型分布,总压分布呈中心低、壁面附近高的特点;在各结构参数的模拟尺寸范围内,增加入口管下倾角度、筒体上部高度、排气管直径会降低分离器的压力损失,但同时会引起切向速度和轴向速度的衰减,降低旋流强度,而且增加排气管直径会使轴向速度由“倒V”型分布转变为“M”型分布,产生滞流;筒体直径和排气管插入长度的增加既会使压力损失升高,也会引起旋流强度的降低。分离器单向入口的非轴对称性使分离筒体空间的流场呈现不稳定性,表现为旋转中心偏离分离筒体的几何中心。研究表明,在各结构参数的模拟尺寸范围内,增加入口管下倾角度、减小筒体直径和排气管直径会使分离器内部流场的不稳定特性增强;排气管插入分离器内部会改善分离器的流场不稳定性;而筒体上部高度的变化对流场不稳定性没有明显的影响。沉箱式柱状旋流分离器的室内样机性能测试试验表明:在试验工况范围内,气、液相流量的增加增强了旋流强度,但同时会引起分离器内壁液膜的附着及爬升,而气相流量的增加是主要因素,其沿壁面旋转产生的巨大剪切曳力使液滴克服自身重力和剪切阻力随气流沿壁面爬升形成液膜;入口管下倾有利于入口管中分层流的形成,而且会降低流体在筒体入口以上的旋流高度,减少气相的液体携带;增加分离器筒体上部的柱体高度,可以扩展分离器的高效运行范围,提高分离器的分离性能;排气管插入长度对分离器高效运行区的影响不如筒体上部高度改变所带来的影响大。
[Abstract]:The caisson type cylindrical cyclone separator is a kind of separator which is to be used on the sea floor and has the function of two-phase and three-phase separation. In this paper, the function of two-phase separation is mainly studied. The separator is designed by the separation mechanism of inlet tube downdip preseparation, columnar swirl main separation and horizontal caisson gravity assisted separation. Under the guidance of multi-phase swirl separation theory and by means of numerical simulation and experimental test, the characteristics of flow field distribution and structural factors in the main separation zone of the separator are analyzed in depth. The main research contents and conclusions are as follows: the simulation of the main separation zone of the separator shows that the tangential velocity presents the characteristics of Lanjin combined vortex structure, the axial velocity presents the "inverted V" type distribution, the total pressure distribution is low in the center and the wall surface is high; In the range of simulated dimensions of each structural parameter, increasing the downdip angle of the inlet tube, the height of the upper cylinder, and the diameter of the exhaust pipe will reduce the pressure loss of the separator, but at the same time, it will cause the attenuation of tangential and axial velocity and decrease the swirl intensity. Moreover, increasing the diameter of exhaust pipe will change the axial velocity from "inverted V" to "M", resulting in stagflation. The increase of cylinder diameter and exhaust pipe insertion length will not only increase the pressure loss, but also cause the decrease of swirl intensity. The non-axisymmetric property of the unidirectional inlet of the separator makes the flow field of the separation cylinder unsteady and the rotating center deviates from the geometric center of the separation cylinder. The results show that increasing the downdip angle of the inlet tube and decreasing the diameter of the cylinder and the exhaust pipe will enhance the unstable characteristics of the internal flow field of the separator in the range of the simulated size of the structural parameters. The flow field instability of the separator can be improved by inserting the exhaust pipe into the separator, but the instability of the flow field is not obviously affected by the change of the height of the upper part of the cylinder. The performance test of the indoor prototype of the caisson type cylindrical cyclone separator shows that the increase of the flow rate of gas and liquid increases the intensity of the swirl flow, but at the same time it will cause the adhesion and climbing of the liquid membrane in the inner wall of the separator. The increase of gas flow rate is the main factor, and the huge shear drag caused by rotating along the wall makes the droplets overcome their own gravity and shear resistance to climb along the wall to form a liquid film. The downdip of the inlet tube is beneficial to the formation of the stratified flow in the inlet tube, and it will reduce the swirl height of the fluid above the inlet of the cylinder and reduce the liquid carrying in the gas phase. Increasing the cylinder height of the upper part of the separator can expand the high efficiency operation range of the separator and improve the separation performance of the separator. The influence of the exhaust pipe insertion length on the high efficiency operation area of the separator is not as great as the change of the height of the upper cylinder.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE95

【相似文献】

相关期刊论文 前10条

1 彭维明,张文秀;分离器中内部流场对分离性能的影响[J];石油学报;2001年06期

2 姚恕;郑连英;刘茉娥;;几种膜对含苯废气分离性能的研究[J];科技通报;1988年01期

3 王寿亭,王补森,何炳林;弱碱阴离子交换树脂对酸性氨基酸分离性能的研究[J];离子交换与吸附;1990年06期

4 张宏选,王三保;提高离心力卸料离心机分离性能的探讨[J];中国化工装备;2000年02期

5 李琳;活性非均匀分布对促进传递膜器分离性能的影响[J];膜科学与技术;1997年02期

6 何启贤;刘久清;颜果春;杨秋菊;蒋彬;;纳滤膜结构特征对纳滤过程分离性能的影响[J];工业水处理;2010年07期

7 关莉莉,段连运,谢有畅;几种二价阳离子的交换对13X分子筛氮氩分离性能的影响[J];无机化学学报;2004年11期

8 卢珂;吴兆亮;侯凯湖;赵艳丽;刘亚君;杜晓丹;;泡沫相塔壁对泡沫分离牛血清蛋白分离性能的影响[J];化工学报;2012年06期

9 石海平,陈小鹏,童张法;催化精馏填料分离性能研究[J];广西民族学院学报(自然科学版);1997年02期

10 方军,黄继才,郭群晖,贾德民,大矢晴彦;聚丙烯酸/聚砜交联复合膜的反渗透分离性能的研究Ⅰ.膜的制备及其对多种有机物水溶液的分离性能[J];高分子材料科学与工程;2001年04期

相关会议论文 前10条

1 王志;杨东晓;张晨昕;王纪孝;王世昌;;分离二氧化碳膜过程技术经济分析[A];中国化工学会2009年年会暨第三届全国石油和化工行业节能节水减排技术论坛会议论文集(下)[C];2009年

2 蔡邦肖;楼民;;高分离性能聚丙烯酸膜制备工艺的初步研究[A];第一届全国化学工程与生物化工年会论文摘要集(上)[C];2004年

3 张妍;彭福兵;李椺;刘家祺;;中空纤维复合膜回收氢气分离性能的研究[A];第一届全国化学工程与生物化工年会论文摘要集(上)[C];2004年

4 武春瑞;张守海;杨法杰;颜春;蹇锡高;;耐高温复合膜的表层结构与分离性能的关系[A];2005年全国高分子学术论文报告会论文摘要集[C];2005年

5 付慧坛;孙宏;霍东霞;王红英;;PNIPAAm 接枝膜的温敏分离性能研究[A];2007年全国高分子学术论文报告会论文摘要集(下册)[C];2007年

6 孙红波;杨扬;钱锦文;安全福;;PHPVAc在溶液中的链形态,膜的聚集态及其PVAP分离性能的研究[A];第四届全国高聚物分子表征学术讨论会论文集[C];2004年

7 张艳萍;张宇峰;张岩;郭豪;;中空纤维纳滤膜的分离性能研究[A];第八届功能性纺织品及纳米技术研讨会论文集[C];2008年

8 伊春海;张莉莉;王志;王纪孝;王世昌;;含PVAm的共混固定载体复合膜CO_2/CH_4分离性能研究[A];第一届全国化学工程与生物化工年会论文摘要集(上)[C];2004年

9 尹晓燕;李忠芳;金磊;王素文;;高CO_2分离性能的支撑体T型沸石/炭复合膜的制备[A];中国硅酸盐学会固态离子学分会理事会暨第一届固态离子学青年学术交流会文集[C];2011年

10 孙昌梅;曲荣君;成国祥;;Cu(Ⅱ)模板三乙烯四胺化交联聚苯乙烯大孔树脂的合成及对Cu(Ⅱ)/Ni(Ⅱ)的分离性能[A];中国化学会第二十五届学术年会论文摘要集(上册)[C];2006年

相关博士学位论文 前3条

1 刘W,

本文编号:2309071


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2309071.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户c903d***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com