当前位置:主页 > 科技论文 > 石油论文 >

稠油注汽井水力脉冲波协同化学解堵动力学机理研究

发布时间:2018-11-15 14:40
【摘要】:注蒸汽采油是稠油油藏高效开发的措施之一,但对于部分稠油和高凝油油藏,由于油藏本身流体及储层岩石矿物组成特点的不同,在注蒸汽过程中,随着储层中温度、压力以及储层流体性质和注入流体性质的变化,容易造成储层发生因沥青质、胶质、无机结垢、粘土矿物、各种机械杂质等堵塞而导致注汽高压、注汽困难的现象,从而造成相应储层采出程度下降。低频水力脉冲波解堵技术作为一种有效的物理振动解堵技术,对于油水井近井地带具有较好的解堵效果,将低频水力脉冲波协同化学剂解堵技术应用于稠油热采高压注汽井,为解除高压注汽井近井地带的有机、无机堵塞提供了新途径。但是目前对于水力脉冲波协同化学剂解堵的机理和动力学研究尚属空白,对水力脉冲波协同化学剂解堵技术的应用缺乏理论指导。基于此,本文以波动力学、分形几何学、化学等多学科理论为基础,系统研究了稠油注汽井有机堵塞和无机堵塞两方面的水力脉冲波协同化学解堵动力学,取得了以下主要成果。将水力脉冲波简化为平面简谐纵波,推导了水力脉冲波力学基本参数,研究了水力脉冲波传播动力学,从微观的角度揭示了水力脉冲波作用下地层表面颗粒沉积解堵动力学机理;通过水力脉冲波协同解吸剂沥青质解吸正交实验优选了水力脉冲波解堵工艺参数,开展了沥青质在石英砂表面的吸附—解吸动力学实验,将沥青质的吸附—解吸动力学实验数据与动力学方程相拟合,揭示了沥青质在石英砂表面的吸附、波动解吸和非波动解吸过程均并非简单的一级反应,而是由反应速率和扩散因子综合控制的过程。水力脉冲波协同解吸剂动态解堵实验结果表明,水力脉冲波物理解堵与解吸剂化学解堵之间相互促进、相互协同;借助于分形几何学研究了水力脉冲波酸蚀作用下的岩石矿物表面特性,实验结果表明波动条件下的酸蚀表面分维值增大,波动作用加强了酸蚀反应的反应速度和激烈程度,使得反应后砂岩颗粒表面结构变得更加复杂无序;基于波动条件下的静态酸岩反应实验,建立了波动条件下静态酸岩反应动力学模型,对波动酸蚀实验数据进行了动力学曲线回归,明确了水力脉冲波协同多氢酸的内在作用机制。基于水力脉冲波对岩石流体物性的作用机理研究,在酸岩反应模型的基础上,建立了水力脉冲波协同作用下无机解堵动力学模型,并进行了数值模型实例计算和主要参数(频率、振幅等)的敏感性分析,为水力脉冲波协同化学无机解堵的现场应用提供一定的理论依据。
[Abstract]:Steam injection oil recovery is one of the effective measures for the development of heavy oil reservoirs. However, for some heavy oil and high condensed oil reservoirs, due to the difference of reservoir fluid and reservoir rock mineral composition, during the steam injection process, with the reservoir temperature, The changes of pressure, reservoir fluid properties and injection fluid properties can easily cause the formation to be blocked by asphaltene, colloid, inorganic scaling, clay minerals, various mechanical impurities, etc., resulting in the phenomena of high pressure and difficulty in steam injection. As a result, the recovery degree of the corresponding reservoir decreases. As an effective physical vibration plugging removal technique, low-frequency hydraulic pulse wave plugging removal technology has a good effect on the near well zone of oil-water wells. The low-frequency hydraulic pulse wave combined with chemical agent is applied to high pressure steam injection wells for thermal recovery of heavy oil. It provides a new way to remove organic and inorganic plugging in high pressure steam injection wells. However, the research on the mechanism and kinetics of hydraulic pulse wave synergistic chemical agent removal is still blank, which is lack of theoretical guidance for the application of hydraulic pulse wave synergistic chemical agent plugging removal technology. Based on the theory of wave mechanics, fractal geometry and chemistry, this paper systematically studies the synergistic chemical plugging kinetics of hydraulic pulse wave in heavy oil steam injection wells from organic plugging and inorganic plugging. The following main achievements have been achieved. The hydraulic pulse wave is simplified as a plane harmonic longitudinal wave, the basic mechanical parameters of the hydraulic pulse wave are derived, and the propagation dynamics of the hydraulic pulse wave is studied. From the microscopic point of view, the mechanism of deplugging kinetics of granular deposition on the formation surface under the action of hydraulic pulse wave is revealed. The hydraulic pulse wave desorption of asphaltene was used to optimize the parameters of hydraulic pulse wave desorption of asphaltene, and the adsorption-desorption kinetics of asphaltene on the surface of quartz sand was studied. By fitting the experimental data of adsorption-desorption kinetics of asphaltene with the kinetic equation, it is revealed that the adsorption of asphaltene on the surface of quartz sand, the process of wave desorption and non-wave desorption are not simple first-order reactions. The process is controlled by reaction rate and diffusion factor. The experimental results of dynamic plugging removal with hydraulic pulse wave and desorption agent show that the physical removal of hydraulic pulse wave and the chemical plugging of desorption agent promote each other and cooperate with each other. The surface characteristics of rock minerals under the action of hydraulic pulse wave etching are studied by means of fractal geometry. The experimental results show that the fractal dimension of the acid corrosion surface increases under fluctuating conditions, and the wave action enhances the reaction speed and intensity of the acid corrosion reaction. The surface structure of sandstone grain becomes more complex and disordered after reaction. Based on the static acid rock reaction experiment under fluctuating condition, the dynamic model of static acid rock reaction under fluctuating condition is established, and the dynamic curve regression of fluctuating acid erosion experiment data is carried out. The internal action mechanism of hydraulic pulse wave combined with polyhydroacid is clarified. Based on the study of the mechanism of hydraulic pulse wave acting on the physical properties of rock fluid, a dynamic model of inorganic plugging removal under the synergistic action of hydraulic pulse wave is established on the basis of acid rock reaction model. The numerical model and the sensitivity analysis of the main parameters (frequency, amplitude, etc.) are carried out, which provides a theoretical basis for the field application of hydraulic pulse wave in the field of chemical and inorganic plugging removal.
【学位授予单位】:中国石油大学(华东)
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE358

【参考文献】

相关期刊论文 前10条

1 刘平礼;薛衡;李年银;罗志锋;邢希金;山金成;;基于指数伤害模型的砂岩酸化模拟[J];石油钻采工艺;2014年01期

2 刘建忠;贾云林;刘平礼;刘双行;刘飞;郑华;;一种砂岩缓速酸酸岩反应模型的建立[J];天然气工业;2013年06期

3 饶鹏;蒲春生;刘涛;何举涛;何志英;;水力脉冲-化学复合技术在青海尕斯油田的应用[J];陕西科技大学学报(自然科学版);2013年02期

4 陶宗明;聂淼;储德林;;相向传播的两列简谐波叠加时能量问题的研究[J];大学物理;2012年11期

5 李松岩;李兆敏;李宾飞;;砂岩基质酸化中酸岩反应数学模型[J];中国矿业大学学报;2012年02期

6 于维钊;乔贵民;张军;胡松青;;沥青质在石英表面吸附行为的分子动力学模拟[J];石油学报(石油加工);2012年01期

7 刘霄;黄岁j;刘学功;;三种人工湿地填料对磷的吸附特性研究[J];水资源与水工程学报;2011年06期

8 董玉忠;;强化稠油注汽高压井治理[J];石油石化节能;2011年06期

9 喻艳红;李清曼;张桃林;王兴祥;;红壤中低分子量有机酸的吸附动力学[J];土壤学报;2011年01期

10 苗晓明;郑立功;陈刚;;低频声波振动采油技术在低渗透油田适应性探讨[J];中外能源;2010年12期

相关硕士学位论文 前3条

1 田广华;助剂复配对渣油悬浮床加氢裂化影响的研究[D];中国石油大学;2009年

2 娄来勇;孤岛聚合物驱原油活性组分乳化特性的研究[D];中国石油大学;2007年

3 商思玉;胜利减压渣油与神府煤共处理供氢性能研究[D];太原理工大学;2004年



本文编号:2333588

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2333588.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户8001e***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com