当前位置:主页 > 科技论文 > 石油论文 >

吴起油田底水油藏控水压裂工艺参数优化

发布时间:2018-12-16 15:36
【摘要】:在底水油藏的开发中,进行常规水力压裂时有可能压穿底水层,引起水窜,因此,需要对压裂裂缝高度进行控制。在水力压裂缝高控制的多种方法中,人工隔层控缝高技术效果较好,且应用广泛。鉴于目前对人工隔层控缝高压裂技术的研究局大多限于基本原理的定性分析和数值模拟,所以有必要进行系统的理论分析,并需要通过实验对控缝高所用下沉剂和携带液进行性能评价和优选。首先,对人工隔层控缝高的机理进行分析,论述了下沉剂在裂缝内的沉降规律,通过软件模拟分析了下沉剂浓度、携带液粘度对下沉剂沉降速度的影响,并给出了对下沉剂的性能要求。其次,对下沉剂携带液的性能进行了评价,通过室内实验测量携带液的粘温性、破胶性、表面张力、残渣含量和粒径,结果表明,浓度为0.4%的胍胶携带液性能良好,可以满足控缝高压裂的要求。通过测量几种不同下沉剂的沉降速度、封堵性能和导流能力,最终优选出TC-1石英砂作为控缝高压裂的下沉剂,其沉降速度为0.97mm/s,滤失系数为7.42×10-4m/min1/2,有利于对压裂裂缝高度的控制。最后,针对延长油田吴起采油厂延9、延10储层存在底水的问题,对控缝高压裂的参数进行优化设计。通过软件模拟得出,射孔位置选择在储层上部时可以确保裂缝在产层内延伸。通过理论计算并结合施工经验得出,注入排量为0.5~0.8m3/min时可以控制裂缝高度。通过理论计算和实验模拟得到,下沉剂浓度为10%~15%时可以形成有效的人工隔层,对储层压裂工艺参数进行优化,认为射孔位置应位于产层顶部或中上部,其中孔密为16孔/m,小排量为0.5~0.8m3/min,小砂量1~5m3,小砂比为15~25%,前置液占比为20~30%;对以上优化后的施工工艺参数进行了现场应用,表明措施效果显著。
[Abstract]:In the development of bottom water reservoir, it is possible to press through the bottom water layer and cause water channeling during conventional hydraulic fracturing, so it is necessary to control the fracture height of fracturing. In many methods of controlling the height of hydraulic pressure fracture, the technology of controlling the height of fracture by artificial spacer is effective and widely used. In view of the fact that most of the current research bureaus on artificial layer controlled fracture technology are limited to qualitative analysis and numerical simulation of basic principles, it is necessary to carry out systematic theoretical analysis. It is also necessary to evaluate and optimize the performance of sinker and carrier fluid used for controlling seam height through experiments. Firstly, the mechanism of artificial spacer controlling fracture height is analyzed, and the settlement law of subsidence agent in crack is discussed. The influence of sinker concentration and viscosity of carrying liquid on subsidence velocity of sinker is analyzed by software simulation. The performance requirements of the sinking agent are also given. Secondly, the performance of the sinking-agent carrier was evaluated. The viscosity, temperature breaking, surface tension, residue content and particle size of the solution were measured through laboratory experiments. The results showed that the guanidine gel carrier solution with 0.4% concentration had good performance. It can meet the requirements of high pressure crack control. By measuring the settling velocity, plugging performance and flow conductivity of several kinds of subsidence agents, TC-1 quartz sand was selected as the sinking agent for controlling crack at high pressure. The settling velocity was 0.97 mm / s, and the filtration coefficient was 7.42 脳 10 ~ (-4) m / min ~ (-1 / 2), and the coefficient of filtration was 7.42 脳 10 ~ (-4) m / min ~ (-1 / 2). It is helpful to control fracture height. Finally, aiming at the problem of bottom water in Yanchang Wuqi Oil production Plant, the parameters of controlling fracture under high pressure are optimized. The software simulation shows that the perforation location can ensure the fracture extending in the production layer when the perforation location is selected in the upper part of the reservoir. Through theoretical calculation and construction experience, it is concluded that the crack height can be controlled when the injection displacement is 0.5~0.8m3/min. Through theoretical calculation and experimental simulation, it is found that effective artificial barrier can be formed when the concentration of sinking agent is 10 ~ 15, and the parameters of reservoir fracturing are optimized. It is considered that the perforation location should be located at the top or middle or upper part of the production layer. Among them, the pore density is 16 holes / m, the small displacement is 0.5 ~ 0.8m ~ (3 / min), the small sand quantity is 1 ~ (5) m ~ (3), the small sand ratio is 15 ~ 25 / m, and the proportion of preposition liquid is 20 ~ 30%. The field application of the above optimized construction technology parameters shows that the effect of the measures is remarkable.
【学位授予单位】:西安石油大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:TE357.1

【参考文献】

相关期刊论文 前10条

1 赵金洲;彭t@;李勇明;张烈辉;;层间滑移对缝高延伸影响的模拟分析[J];新疆石油地质;2013年06期

2 张昕;余航;龙珂;张鹏;;裂缝高度控制技术在FracproPT施工优化中的应用[J];油气地球物理;2011年04期

3 吕芬敏;;控水压裂技术在温米油田的研究与应用[J];钻采工艺;2011年05期

4 赖海涛;梁凌云;李照允;冯晨;;苏里格气田裂缝高度延伸模拟分析与控缝高技术[J];石油化工应用;2011年03期

5 赵虹;党r,

本文编号:2382583


资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2382583.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户09eb7***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com