钻柱力学三原理及定性模拟实验
发布时间:2019-08-20 16:48
【摘要】:在一般力学中,系统都要遵循平衡原理、最小势能原理和最小耗散功率原理。钻柱力学也遵循这三原理。钻柱的任何一点、任何时刻,都必须满足力学平衡方程;若出现多解,先用最小势能原理判断;若还存在多解,则用最小耗散功率原理判断。用钻柱失稳问题说明了最小耗散功率原理不包含最小势能原理;不可用最小耗散功率原理取代最小势能原理。实验发现:1杆柱的转速越高,其挠度越小,越靠井筒中心。2存在涡动状态转换临界转速。当转速低于此临界转速时,随着转速的增加,耗散功率增加;当转速高于此临界转速时,随着转速的增加,耗散功率先迅速降低并且杆柱的挠度突然减小,然后随着转速的增加,耗散功率又增加。3液体的黏度越大,涡动状态转换临界转速越小;轴向载荷越大,涡动状态转换临界转速越小。钻柱力学三原理为复杂的钻柱动力学问题的多解性判别提供了新的判据。
[Abstract]:In general mechanics, the system should follow the principle of balance, the principle of minimum potential energy and the principle of minimum dissipative power. Drill string mechanics also follows these three principles. Any point of drill string must satisfy the mechanical equilibrium equation at any time. If there are multiple solutions, it is judged by the principle of minimum potential energy, and if there are still multiple solutions, it is judged by the principle of minimum dissipative power. With the problem of drill string instability, it is shown that the principle of minimum dissipative power does not include the principle of minimum potential energy, and the principle of minimum dissipative power can not be used to replace the principle of minimum potential energy. The experimental results show that: (1) the higher the rotating speed of the rod string is, the smaller the deflection is and the closer it is to the center of the wellbore. (2) there is a critical speed of vortex state transition. When the rotational speed is lower than this critical speed, the dissipative power increases with the increase of rotating speed; when the rotational speed is higher than this critical speed, the dissipative work decreases rapidly and the deflection of rod string decreases suddenly, and then the dissipative power increases with the increase of rotating speed. 3 the greater the viscosity of liquid, the smaller the critical speed of vortex state transition; the larger the axial load, the smaller the critical speed of vortex state transition. The three principles of drill string mechanics provide a new criterion for judging the multiple solutions of complex drill string dynamics problems.
【作者单位】: 燕山大学石油工程研究所;
【基金】:国家自然科学基金项目(No.51244004,No.51374183,No.51490653)资助
【分类号】:TE21
本文编号:2528756
[Abstract]:In general mechanics, the system should follow the principle of balance, the principle of minimum potential energy and the principle of minimum dissipative power. Drill string mechanics also follows these three principles. Any point of drill string must satisfy the mechanical equilibrium equation at any time. If there are multiple solutions, it is judged by the principle of minimum potential energy, and if there are still multiple solutions, it is judged by the principle of minimum dissipative power. With the problem of drill string instability, it is shown that the principle of minimum dissipative power does not include the principle of minimum potential energy, and the principle of minimum dissipative power can not be used to replace the principle of minimum potential energy. The experimental results show that: (1) the higher the rotating speed of the rod string is, the smaller the deflection is and the closer it is to the center of the wellbore. (2) there is a critical speed of vortex state transition. When the rotational speed is lower than this critical speed, the dissipative power increases with the increase of rotating speed; when the rotational speed is higher than this critical speed, the dissipative work decreases rapidly and the deflection of rod string decreases suddenly, and then the dissipative power increases with the increase of rotating speed. 3 the greater the viscosity of liquid, the smaller the critical speed of vortex state transition; the larger the axial load, the smaller the critical speed of vortex state transition. The three principles of drill string mechanics provide a new criterion for judging the multiple solutions of complex drill string dynamics problems.
【作者单位】: 燕山大学石油工程研究所;
【基金】:国家自然科学基金项目(No.51244004,No.51374183,No.51490653)资助
【分类号】:TE21
【相似文献】
相关期刊论文 前10条
1 张学鸿;陈抡元;刘巨保;;整体钻柱力学接触有限元分析[J];石油学报;1992年03期
2 高德利;钻柱力学若干基本问题的研究[J];石油大学学报(自然科学版);1995年01期
3 李子丰;钻柱力学研究中几个值得探讨的问题[J];石油机械;1996年08期
4 庞东晓;刘清友;李斌;;基于元胞自动机的钻柱力学模型建立和求解[J];石油机械;2007年04期
5 唐姝;;钻柱力学双重非线性问题中的四套坐标系[J];科技创新导报;2009年19期
6 刘延强,吕英民,于永南;环空大挠度钻柱力学分析的动坐标迭代法及其简化应用[J];计算结构力学及其应用;1994年02期
7 周志宏;覃江;龚小霞;冯定;涂忆柳;;钻柱力学中接触力计算方法研究[J];力学与实践;2014年04期
8 李子丰,马兴瑞,,黄文虎;钻柱力学基本方程及其应用[J];力学学报;1995年04期
9 ;本期导读[J];石油钻采工艺;2008年02期
10 苏华,张学鸿,王光远;钻柱力学发展综述之二:钻柱静力学[J];大庆石油学院学报;1994年01期
相关硕士学位论文 前2条
1 覃江;三维钻柱力学算法及其软件开发[D];长江大学;2015年
2 秦伟;针对钻柱力学有限元的矩阵分布运算研究[D];中国石油大学;2010年
本文编号:2528756
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/2528756.html