对富油微藻的热解以及酯交换反应的研究:粗生物油和生物柴油生产的比较
发布时间:2021-07-05 09:55
近来,微藻作为第三代生物燃料的原料在能源研究领域引起了极大的关注。因为微藻具有的独特优势,使其与第一代原料有着很大的区别,例如较高的光合效率、生长速率、生物量生产力以及在废液或海水中的生长能力。然而,与传统燃料市场相比,微藻生物燃料的商业可行性是需要克服的主要挑战。本研究项目的重点是生物质热解和脂质酯交换反应以及对一些有潜力的微藻进行生物柴油制备的评估,其中包括Micractinium reisseri,Scenedesmus obliquus SAG276-10和Scenedesmus obliquus FACHB-276。本研究利用固定床反应器对生物质进行热解,然后使用热重分析仪,气相色谱/质谱(GC/MS)分析和傅立叶变换红外(FTIR)光谱分析,将脂质转化为脂肪酸甲酯(FAME)。在第一部分中,该研究比较了在不同操作条件下使用固定床反应器不同微藻的生物油生产率,以获得高产率的粗生物油。在不同温度(450℃,500℃,550℃和600℃)和不同保留时间(15分钟,30分钟,45分钟和60分钟)下进行热解实验。此外,研究了热裂解,产物质量和催化裂解。然后对最有生产力的藻种使用催化剂...
【文章来源】:江苏大学江苏省
【文章页数】:111 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
CHAPTER:1 INTRODUCTION
1.1 Background of the Study and Statement of the Problem
1.2 Objectives of the Study
1.3 Scientific Novelty of the Study
1.4 Organization of the Dissertation
CHAPTER:2 LITERATURE REVIEW
2.1 Overview of microalgae
2.2 Microalgae cultivation systems
2.2.1 Open raceway ponds
2.2.2 Closed photobioreactors
2.2.3 Hybrid cultivation systems
2.3 Microalgae for biofuels
2.3.1 Biodiesel production by transesterification
2.3.2 Bio-oil production via thermochemical conversion
2.4 Energy efficiency and economy
CHAPTER:3 ADJUSTING THE REACTOR CONDITIONS FOR ENHANCED BIO-OIL PRODUCTION
3.1 Introduction statement
3.2 Experimental procedure
3.2.1 Materials and catalyst
3.2.2 Experimental apparatus and procedure
3.3 Pyrolysis behavior of biomass
3.3.1 Thermogravimetric analysis
3.4 Analysis of the pyrolysis products
3.4.1 GC/MS analysis of bio-oil
3.4.2 FTIR analysis of bio-oil
3.5 Results and discussion
3.5.1 Growth pattern and biomass characterization
3.5.2 Thermal decomposition characteristics of microalgae
3.5.3 Effect of temperature and retention time on bio-oil yield
3.5.4 Effect of catalyst-to-algae ratio on bio-oil yield
3.5.5 Effect of temperature and catalyst on bio-oil composition
3.5.6 FTIR results
3.6 Conclusion
CHAPTER:4 EVALUATION OF GROWTH AND BIO-OIL PRODUCTION AT ELEVEATED CO_2 CONCENTRATIONS
4.1 Introduction statement
4.2 Materials and methods
4.2.1 Algae strain and growth conditions
4.2.2 Biomass assay
4.2.3 Biomass characterization and pyrolysis
4.3 Results and discussion
4.3.1 Growth pattern
4.3.2 Biomass characterization and pyrolysis results
4.4 Conclusion
CHAPTER:5 MICROALGAE HARVEST INFLUENCES THE ENERGY RECOVERY:A CASE STUDY ON CHEMICAL FLOCCULATION OFSCENEDESMUS OBLIQUUS FOR BIODIESEL AND CRUDE BIO-OIL PRODUCTION
5.1 Introduction statement
5.2 Materials and methods
5.2.1 Microalga and growth conditions
5.2.2 Growth measurement
5.2.3 Harvest and biomass characterization
5.2.4 Lipid extraction and biodiesel analysis
5.2.4.1 Lipid estimation
5.2.4.2 FAMEs analysis
5.2.5 Pyrolysis and bio-oil analysis
5.2.6 Statistical analysis
5.3 Results and discussion
5.3.1 Growth curve and biomass characterization
5.3.2 Lipid recovery and FAMEs profile
5.3.3 Thermal decomposition and crude bio-oil production
5.3.3.1 Thermal decomposition
5.3.3.2 Crude bio-oil production
5.3.3.3 Composition of the crude bio-oil
5.4.Economic feasibility
5.5 Conclusions
GENERAL CONCLUSIONS AND FUTURE WORK SUGGESTIONS
REFERENCES
APPENDICESA
APPENDICESB
本文编号:3265854
【文章来源】:江苏大学江苏省
【文章页数】:111 页
【学位级别】:硕士
【文章目录】:
ACKNOWLEDGEMENT
ABSTRACT
摘要
CHAPTER:1 INTRODUCTION
1.1 Background of the Study and Statement of the Problem
1.2 Objectives of the Study
1.3 Scientific Novelty of the Study
1.4 Organization of the Dissertation
CHAPTER:2 LITERATURE REVIEW
2.1 Overview of microalgae
2.2 Microalgae cultivation systems
2.2.1 Open raceway ponds
2.2.2 Closed photobioreactors
2.2.3 Hybrid cultivation systems
2.3 Microalgae for biofuels
2.3.1 Biodiesel production by transesterification
2.3.2 Bio-oil production via thermochemical conversion
2.4 Energy efficiency and economy
CHAPTER:3 ADJUSTING THE REACTOR CONDITIONS FOR ENHANCED BIO-OIL PRODUCTION
3.1 Introduction statement
3.2 Experimental procedure
3.2.1 Materials and catalyst
3.2.2 Experimental apparatus and procedure
3.3 Pyrolysis behavior of biomass
3.3.1 Thermogravimetric analysis
3.4 Analysis of the pyrolysis products
3.4.1 GC/MS analysis of bio-oil
3.4.2 FTIR analysis of bio-oil
3.5 Results and discussion
3.5.1 Growth pattern and biomass characterization
3.5.2 Thermal decomposition characteristics of microalgae
3.5.3 Effect of temperature and retention time on bio-oil yield
3.5.4 Effect of catalyst-to-algae ratio on bio-oil yield
3.5.5 Effect of temperature and catalyst on bio-oil composition
3.5.6 FTIR results
3.6 Conclusion
CHAPTER:4 EVALUATION OF GROWTH AND BIO-OIL PRODUCTION AT ELEVEATED CO_2 CONCENTRATIONS
4.1 Introduction statement
4.2 Materials and methods
4.2.1 Algae strain and growth conditions
4.2.2 Biomass assay
4.2.3 Biomass characterization and pyrolysis
4.3 Results and discussion
4.3.1 Growth pattern
4.3.2 Biomass characterization and pyrolysis results
4.4 Conclusion
CHAPTER:5 MICROALGAE HARVEST INFLUENCES THE ENERGY RECOVERY:A CASE STUDY ON CHEMICAL FLOCCULATION OFSCENEDESMUS OBLIQUUS FOR BIODIESEL AND CRUDE BIO-OIL PRODUCTION
5.1 Introduction statement
5.2 Materials and methods
5.2.1 Microalga and growth conditions
5.2.2 Growth measurement
5.2.3 Harvest and biomass characterization
5.2.4 Lipid extraction and biodiesel analysis
5.2.4.1 Lipid estimation
5.2.4.2 FAMEs analysis
5.2.5 Pyrolysis and bio-oil analysis
5.2.6 Statistical analysis
5.3 Results and discussion
5.3.1 Growth curve and biomass characterization
5.3.2 Lipid recovery and FAMEs profile
5.3.3 Thermal decomposition and crude bio-oil production
5.3.3.1 Thermal decomposition
5.3.3.2 Crude bio-oil production
5.3.3.3 Composition of the crude bio-oil
5.4.Economic feasibility
5.5 Conclusions
GENERAL CONCLUSIONS AND FUTURE WORK SUGGESTIONS
REFERENCES
APPENDICESA
APPENDICESB
本文编号:3265854
本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/3265854.html