当前位置:主页 > 科技论文 > 石油论文 >

基于测井、地震属性和和声阻抗的沉积相圈定—巴基斯坦下印度河盆地Sawan地区

发布时间:2023-09-13 21:40
  本研究的目的是描述巴基斯坦中印度河盆地Sawan气田下Goru组C砂岩层段砂泥相分布及其古环境。用于相分析等的数据包括测井资料、三维叠后地震资料、公开的岩心资料和最近的生产资料。研究区域自2003年起共钻有15口井,下Goru组C砂岩层(在工区内以X1水平线作为标记)为已探明储层,气藏潜力巨大。Sawan气田是巴基斯坦中印度河盆地最具开发潜力的气田之一,累计产量达8500亿立方英尺。在储层(C砂岩层)中,薄页岩层序互层分散,非均质性极强。因此,传统的地震振幅解释难以较好地描述砂泥岩相的分布。本文将C砂岩储层的沉积相与地震相分析相结合,采用了基于随机建模技术的相建模,测井相分析,基于三维叠后地震属性的近期生产数据分析,甜点评价,人工蚂蚁跟踪法自动断层提取,以及基于约束稀疏脉冲反演结果的储层描述等,来进行前景预测和油田开发规划,以达到产出的最大化。通过对地震剖面和标志层的全面地震解释,发现工区C砂岩段目标区相当连续,地层圈闭是储层砂岩成藏的主要原因。综合地震分析揭示,C砂岩层段为平行或亚平行反射,具有较大的反射幅值,介质反射连续性好,介质反射频率中等,具有楔状几何外形。盆地坡面和充填体定义...

【文章页数】:222 页

【学位级别】:博士

【文章目录】:
COVER LETTER (RESUME)
摘要
Abstract
DEDICATION
Acronyms and Abbreviations
1 Introduction
    1.1 Problem Statement and Motivation of Research Goal
    1.2 Research Background of the Study Area
    1.3 Objectives of the Research
    1.4 Research Innovation
    1.5 Generalized Workflow
    1.6 Structure of the Dissertation
    1.7 Limitation,Future Work and Implications
    1.8 Software Used
2 General Geology and Stratigraphy
    2.1 Sedimentary Basins of Pakistan
    2.2 Classification of Indus Basin
        2.2.1 Southern Indus Basin
    2.3 Structural Evolution and Stratigraphic Characteristics
    2.4 Tectonics
    2.5 Petroleum Prospects
    2.6 Source Rocks
        2.6.0 Sember Formation
        2.6.1 Ranikot Formation
        2.6.2 Goru Formation
    2.7 Reservoir Rocks
        2.7.1 Lower Goru Formation
    2.8 Trap and Seal
        2.8.1 Upper Goru Formation
        2.8.2 Lower Goru Formation
    2.9 Petrographic Analysis of C-Sand
        2.9.1 Framework Mineralogy
        2.9.2 Texture
        2.9.3 Mineralogical and textural maturity
3 Data Set and Methodology
    3.1 Study Area
    3.2 Source of Acquired Data
        3.2.1 Data Formats
    3.3 Basemap
    3.4 Seismic Data
    3.5 Processig and Acquisition of the Sawan field Parameters
    3.6 Well Data
    3.7 Research Methodology
4 Seismic Interpretation
    4.1 Synthetic Seismogram
        4.1.1 Theory of Synthetic Seismogram
        4.1.2 Steps of Synthetic Seismogram
    4.2 Seismic Interpretation Analysis
        4.2.1 Seismic Horizons
        4.2.2 Structure and Thickness Maps
    4.3 Facies Analysis
        4.3.1 Seismic Facies
        4.3.2 Sedimentary Facies
        4.3.3 Log facies
    4.4 Integrated Seismic Facies Analysis
        4.4.1 Seismic Facies-1(SF-1)
        4.4.2 Seismic Facies-2(SF-2)
        4.4.3 Seismic Facies-3(SF-3)
        4.4.4 Seismic Facies-4(SF-4)
        4.4.5 Seismic Facies-5(SF-5)
        4.4.6 Seismic Facies-6(SF-6)
        4.4.7 Seismic Facies-7(SF-7)
    4.5 Depositional Environments of Seismic Facies
        4.5.1 Depositional Facies(DF-1)
        4.5.2 Depositional Facies(DF-2)
        4.5.3 Depositional Facies(DF-3)
    4.6 Combined Facies Analysis of C-sand
        4.6.1 Landward Facies Analysis of C-Sand
        4.6.2 Transitional Facies Analysis of C-Sand
        4.6.3 Basinward Facies Analysis of C-Sand
    4.7 Discussion
    4.8 Conclusion
5 Facies Modeling
    5.1 Introduction
    5.2 Facies Modeling
    5.3 Reservoir Modeling Workflow
        5.3.1 Measures to be Employed to Improve a3D Geological Model
        5.3.2 Modeling Steps Under Geostatistical Modeling
    5.4 Procedure Used to Construct3D Geological Model
        5.4.1 Organize and Prepare Input Data
        5.4.2 Making Surface from Contour Lines and Horizons
        5.4.3 Stratigraphic Modeling
        5.4.4 Structure Modeling
        5.4.5 Property Modeling
    5.5 Results and Summary
6 Well-Log Facies Interpretation
    6.1 Petrophysical Analysis
        6.1.1 Volume of Shale
        6.1.2 Porosity
    6.2 Log Curve Shape Analysis for Facies Identification
    6.3 Facies Identified from Gamma Ray Logs
        6.3.1 EF-1(Funnel-Shaped Successions)
        6.3.2 EF-2(Bell-Shaped Successions)
        6.3.3 EF-3(Cylindrical-Shaped Successions)
        6.3.4 EF-4 Irregular Log Trends(Serrated-Shaped Successions)
        6.3.5 EF-5 Irregular Log Trends
    6.4 Geological Modeling and Depositional Environment
    6.5 Creation of Facies Logs Using Petrophysical Properties
    6.6 Crossplots for Lithology Discrimination
    6.7 Conclusion
7 Seismic Attribute Analysis
    7.1 Overview
    7.2 3D Seismic Attribute Extraction& Analysis
    7.3 Volume Attributes
        7.3.1 Relative Acoustic Impedance
        7.3.2 RMS Amplitude
        7.3.3 Envelope of Trace(Reflection Strength/Instantaneous Amplitude)
        7.3.4 Sweetness
        7.3.5 Instantaneous Frequency
        7.3.6 Phase Shift
        7.3.7 Structural smoothing
    7.4 Sweet Spot Evaluation
    7.5 Horizon Attributes
        7.5.1 RMS Amplitude
        7.5.2 Half Energy
        7.5.3 Instantaneous Frequency
        7.5.4 Instantaneous Phase
    7.6 Automatic Fault Extraction Using Artificial Ant-Tracking
        7.6.1 Variance
        7.6.2 Chaos
        7.6.3 Structural Smoothing
    7.7 Ant Tracking Algorithm
        7.7.1 Ant Tracking Result
    7.8 Extraction of the Faults and Fractures
    7.9 Conclusion
8 Seismic Inversion and Reservoir Characterization
    8.1 Problems and inversion method in the study area
        8.1.1 Effect of heterogeneity in the C-sand interval
        8.1.2 Inversion method applied in the study area
        8.1.3 Acoustic Impedance
        8.1.4 Retrieval of acoustic impedance
        8.1.5 Estimation of acoustic impedance from broadband seismic data
        8.1.6 Estimation of acoustic impedance from band-limited seismic data
        8.1.7 Principle of Constrained sparse spike inversion
        8.1.8 Horizon interpretations
        8.1.9 Creating Missing Logs
        8.1.10 Wavelet Estimation and Synthetic Seismogram
        8.1.11 Low-frequency Model
        8.1.12 Interpolation of well log acoustic impedance
        8.1.13 Constrained Sparse Spike Inversion
        8.1.14 Edit Trend
        8.1.15 Trace Merging
        8.1.16 QC Parameters
    8.2 Results and Discussion
        8.2.1 Acoustic impedance analysis(Map view)
    8.3 Seismic characterization of reservoir parameters
        8.3.1 Reservoir porosity distribution
        8.3.2 Reservoir Sand Ratio distribution
    8.4 Conclusion
9 Conclusions and Recommendations
    9.1 Overview of the Study and Issues
    9.2 Output of the Study
    9.3 Main Findings of the Study Area
    9.4 Suggestions and Recommendations
ACKNOWLEDGEMENTS
References



本文编号:3845965

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/shiyounenyuanlunwen/3845965.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户19665***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com