火星表面亮温的时空变化特征分析
发布时间:2018-04-03 13:53
本文选题:火星 切入点:热红外 出处:《遥感学报》2016年04期
【摘要】:利用3个火星轨道器获取的热红外波段探测数据,分析了火星表面亮温在时间维上的年际和季节性变化规律,以及空间维上随地形和纬度的变化特征。研究结果表明:(1)5个火星年的表面亮温年际变化幅度均未超出轨道器热红外波段探测数据的精度范围。(2)火星南半球表面亮温的季节性变化幅度大,远日点时期表面亮温随季节的变化基本符合正弦规律且年际差异小,而近日点则有多处明显偏离正弦规律且年际差异较大;北半球表面亮温的季节性变化幅度远小于南半球,且季节特征不明显,受全球性尘暴影响而引起的夜间升温要大于夏季太阳辐射能增加引起的升温。(3)在同一时段,盆地、峡谷等低海拔地形的表面亮温较高,而山峰、高原、台地等高海拔地形的表面亮温一般较低;Olympus Mons地区的表面亮温与高程之间存在相关系数为 0.9072的负相关关系,线性拟合的结果表明该区域海拔每上升1 km,表面亮温下降约1.4 K。(4)表面亮温随纬度的变化总体上满足低纬度高于高纬度的规律,但受到地形等因素的影响,表面亮温最大值出现在偏离赤道的35°S位置,而赤道附近纬度的表面亮温最小值要小于临近稍高纬度位置的最小值;从赤道到两极同纬度表面亮温的差异逐渐减小。
[Abstract]:Based on the data obtained from three Mars orbiters, the interannual and seasonal variations of the surface brightness temperature of Mars in time dimension, as well as the variation characteristics of spatial dimension with topography and latitude, are analyzed.The results show that the interannual variation of surface brightness temperature in 5 Mars years does not exceed the precision range of the Orbiter's thermal infrared band data. 2) the seasonal variation range of surface bright temperature in the southern hemisphere of Mars is large.The variation of surface brightness temperature with seasons basically accords with the sine law and the annual variation is small, while the perihelion point has many obvious deviations from the sine law and the interannual variation is great, the seasonal variation of surface brightness temperature in the Northern Hemisphere is much smaller than that in the Southern Hemisphere.The seasonal characteristics are not obvious, and the night temperature caused by the global dust storm is higher than that caused by the increase of solar radiation energy in summer.) at the same time, the surface bright temperature of low elevation topography such as basins and canyons is higher, while the peak, plateau, etc.There is a negative correlation between the surface brightness temperature and elevation in the area of Olympus Mons with a negative correlation coefficient of 0.9072.The linear fitting results show that for each elevation of 1 km, the surface brightness temperature decreases by about 1.4 K. ~ (4)) the variation of surface brightness temperature with latitude generally satisfies the rule that the low latitude is higher than the high latitude, but is affected by topography and other factors.The maximum value of surface brightness temperature appears at 35 掳S position deviating from the equator, and the minimum value of surface brightness temperature near the equator is smaller than that near the higher latitude, and the difference between the surface brightness temperature from equator to the same latitude decreases gradually.
【作者单位】: 中国科学院遥感与数字地球研究所遥感科学国家重点实验室;中国科学院大学;
【基金】:国家自然科学基金(编号:41472303)~~
【分类号】:P185.3
【相似文献】
相关期刊论文 前3条
1 冉真;王振占;李芸;;Diviner红外温度与嫦娥卫星微波探测仪月表亮温的比较分析[J];空间科学学报;2014年03期
2 封剑青;苏彦;刘建军;郑磊;谭旭;戴舜;李俊铎;邢树果;;嫦娥二号卫星微波探测仪数据定标和处理结果[J];地球科学(中国地质大学学报);2013年04期
3 ;[J];;年期
相关博士学位论文 前1条
1 周明星;基于CE-1号卫星微波辐射计传感数据的月壤厚度反演[D];南京航空航天大学;2012年
相关硕士学位论文 前3条
1 蒋夏;基于DEM的月表亮温模拟的研究[D];华中科技大学;2012年
2 刘杰娜;粗糙月面微波辐射亮温计算方法研究[D];华中科技大学;2012年
3 王丛丛;粗糙月面微波辐射亮温建模与计算[D];华中科技大学;2011年
,本文编号:1705469
本文链接:https://www.wllwen.com/kejilunwen/tianwen/1705469.html