嫦娥一号干涉成像光谱仪数据处理和Aristarchus地区着陆点选择
本文选题:嫦娥一号 + 干涉成像光谱仪 ; 参考:《山东大学》2011年博士论文
【摘要】:中国月球探测工程分为“绕”、“落”、“同”三期。一期绕月探测工程首颗月球轨道探测器嫦娥一号于2007年10月成功发射,它所搭载的Sagnac型干涉成像光谱仪首次应用于月球探测,其主要科学目标为识别和反演月球表面矿物成分,分析铁(FeO)和钛(TiO2)元素含量分布。嫦娥一号在轨运行期间,干涉成像光谱仪获取了月球表面480-960 nm之间32个谱段、空间分辨率200 m/pixel的多光谱数据,其入射角、出射角和太阳相角范围分别为0-80度、0-7度、0-80度,覆盖南北纬70度以内84%的区域。干涉成像光谱仪原始数据经一系列预处理流程生成2A级辐亮度光谱图像;为与其他对月观测和实验室测量数据比较,消除光照-观测几何和太阳光谱特征对矿物识别和铁钛含量分析影响,我们根据干涉成像光谱仪特性和已发布数据状况,提出2A级辐亮度数据光度校正和反射率转换方法。二期和三期月球探测工程计划向月球发射软着陆器和巡视器,进行月球表面就位和巡视探测与样品返回;我们综合分析Aristarchus地区成分数据,表明其作为着陆点具有重要科学意义。在干涉成像光谱仪数据光度校正中,我们分块提取2A级辐亮度光谱和相应太阳光照-观测几何,分别拟合Lommel-Seeliger和Hapke光度模型,建立月球表面辐亮度与入射角、出射角和太阳相角之间函数依赖关系,然后根据所得光度模型将2A级辐亮度数据归一至Brown University Keck/NASA Reflectance Experiment Laboratory(RELAB)实验室月球样品光谱测量标准几何条件。Lommel-Seeliger光度模型相函数采用四次多项式,并加入指数项以考虑opposition effect;山最小二乘法计算模型参数时,使用基于Levenberg-Marquardt算法的MPFIT程序分段拟合,避免不分段拟合在相角接近于零时相函数下降。Hapke光度模型中,根据干涉成像光谱仪数据谱段和太阳相角范围,我们不考虑多次散射、热辐射和表面粗糙度,相函数只包括后向散射Henyey-Greenstein函数,opposition effect采用shadow-hiding项;由最小二乘法计算模型参数时,使用Differential Evolution算法搜索参数空间,使拟合结果不依赖参数初值选择。在干涉成像光谱仪数据反射率转换中,我们选取2225轨数据位于平坦、均匀的Cayley Plains中的一块区域作为定标点,地基望远镜和Clementine UVVIS相机观测都表明其光学性质可由Apollo 16成熟月壤样品62231代表。干涉成像光谱仪2A级数据光度校正后每一像素辐亮度与定标点辐亮度之比乘以Apollo 1662231成熟月壤样品反射率即将辐亮度数据转换为反射率。Aristarchus地区位于月球正面西北部西经30-70度、北纬10-48度之间,包括Aristarchus撞击坑和高原、Lichtenberg撞击坑及Gruithuisen穹窿(Gruithuisen Domes)。我们分析这一地区铁和钍元素含量混合趋势,推测Aristarchus撞击坑所暴露非月海岩石代表风暴洋KREEP地体中与晚期侵入活动有关的成分端元;根据图像数据和已有研究结果,表明这一地区存在火山碎屑沉积、月溪和穹窿等多样的火山特征,及稀有月球样品,如硅质火山物质。干涉成像光谱仪2A级辐亮度数据分块提取并除以Lommel-Seeliger因子校正临边昏暗效应后,在太阳相角-辐亮度二维直方图中明显分为对应月球表面月海和高地的两组数据。分块提取数据分段拟合Lommel-Seeliger光度模型结果表明,不同相角分段间断点产生的拟合曲线在20°-75。相角范围内差别不大;通过对比同一地区不同太阳光照-观测几何的两次覆盖图像检验光度校正效果,初步结果表明二者光度校正后辐亮度偏差在干涉成像光谱仪地面定标实验允许误差范围内。Hapke模型光度校正因子与最近USGS Robotic Lunar Observatory (ROLO)数据拟合Lommel-Seelige模型光度校正结果相符。干涉成像光谱仪反射率数据与Clementine UVVIS 750 nm和900一nm反射率数据对比表明,二者相对偏差一般在10%以内。Aristarchus高原多样的火山特征、Lichtenberg撞击坑附近月海玄武岩年龄和Gruithuisen穹窿火山活动使Aristarchus地区着陆探测具有重要科学价值;Aristarchus撞击坑抛出物代表月壳化学分异程度最大的物质,对理解月球热运动具有重要意义。
[Abstract]:The lunar exploration project of China is divided into three phases: "winding", "falling" and "same". The first lunar orbit detector, Chang'e I, launched in October 2007, was first applied to the lunar exploration with the Sagnac type interferometric imaging spectrometer. Its main scientific objective is to identify and retrieve the mineral components of the moon's surface. The distribution of iron (FeO) and titanium (TiO2) element content. During the orbit of Chang'e I, the interferometric imaging spectrometer obtained 32 spectral segments between the 480-960 nm of the lunar surface and the spatial resolution of 200 m/pixel. The incidence angle, the ejection angle and the solar angle range were 0-80 degrees, 0-7 degrees and 0-80 degrees respectively, covering 84% of the north and south latitude 70 degrees. Domain. The original data of the interferometric imaging spectrometer generated 2A level radiance spectral images through a series of preprocessing processes. To compare with other lunar and laboratory measurements, the effects of illumination observation geometry and solar spectral features on mineral recognition and analysis of iron and titanium content are eliminated. We are based on the characteristics of the interferometric imaging spectrometer and the published number. According to the situation, the 2A level radiance data photometric correction and reflectivity conversion methods are proposed. The two and three lunar exploration projects plan to launch the soft landing gear and inspector to the moon, carry out the lunar surface location and patrol detection and return the sample. We synthetically analyze the component data of the Aristarchus area, indicating that it has important science as a landing point. In the data photometric correction of the interferometric imaging spectrometer, we extract the 2A level radiance spectrum and the corresponding solar illumination - observation geometry to fit the Lommel-Seeliger and Hapke photometric models, respectively, to establish the moon surface radiance and incidence angle, the relation between the ejection angle and the solar angle, and then the 2A model will be based on the obtained photometric model. Degree of radiance data is normalized to Brown University Keck/NASA Reflectance Experiment Laboratory (RELAB) laboratory Lunar Sample spectral measurement standard geometric condition.Lommel-Seeliger photometric model phase function adopted four times polynomial, and adding exponential term to consider opposition effect; mountain least square method to calculate model parameters, using the base The MPFIT program of Levenberg-Marquardt algorithm is piecewise fitting to avoid the non piecewise fitting in the.Hapke photometric model which is near zero phase function. According to the data spectrum section of the interferometric imaging spectrometer and the range of the sun angle, we do not consider multiple scattering, thermal radiation and surface roughness, and the phase function only includes backscatter Henyey-Greenste The in function, the opposition effect uses the shadow-hiding term; when the model parameters are calculated by the least square method, the Differential Evolution algorithm is used to search the parameter space, and the fitting results are not dependent on the initial parameter selection. In the data reflectivity conversion of the interferometric imaging spectrometer, we select the 2225 rail data in a flat and uniform Cayley Plains. As a punctuation point, the optical properties of the ground-based telescope and Clementine UVVIS camera show that the optical properties can be represented by the Apollo 16 mature Lunar Sample 62231. The ratio of each pixel radiance to the fixed point radiance is multiplied by the Apollo 1662231 mature lunar soil sample reflectivity after the 2A level data photometric correction of the interferometric imaging spectrometer. The luminance data is converted to the reflectivity.Aristarchus area located at 30-70 degrees west of the northwest lunar front and 10-48 degrees north latitude, including the Aristarchus crater and the plateau, the Lichtenberg impact pit and the Gruithuisen dome (Gruithuisen Domes). We analyze the mixing trend of the iron and thorium element content in this area, and speculate that the Aristarchus impact crater is violent. The lunar Sea rocks represent the component end elements associated with the late invasion activity in the KREEP terrain of the storm ocean. According to the image data and the existing research results, it is shown that there are various volcanic characteristics, such as the volcanic debris, the moon stream and the dome, and the rare lunar samples, such as siliceous volcanic materials. The 2A level brightness degree of the interferometric imaging spectrometer. Two groups of data are clearly divided into two groups of lunar surface and high ground in the solar angle and radiance two-dimensional histogram according to the partition extraction and division of the Lommel-Seeliger factor. The results of piecewise fitting Lommel-Seeliger photometric model with block extraction data show that the fitting curves of the dissection discontinuous points at the same angle are 2. The difference in the range of 0 -75. phase angle is not significant; by comparing the two coverage images of different solar illumination observation geometry in the same area to check the photometric correction effect, the preliminary results show that the radiance deviation of the two photometric correction after the two photometric calibration is within the allowable error range of the interferometric imaging spectrometer ground calibration experiment, and the.Hapke model photometric correction factor and the nearest USGS Robotic Lunar Observatory (ROLO) data fitting Lommel-Seelige model photometric correction results. The reflectance data of the interferometric imaging spectrometer compared with Clementine UVVIS 750 nm and 900 nm albedo data shows that the relative deviation of the two is generally within 10% of the.Aristarchus plateau, and the lunar sea near the Lichtenberg crater. The basalt age and the Gruithuisen dome volcanism have important scientific value for landing detection in the Aristarchus area, and the ejection from the Aristarchus impact pit represents the most significant chemical differentiation of the lunar crust, which is of great significance to the understanding of the lunar thermal movement.
【学位授予单位】:山东大学
【学位级别】:博士
【学位授予年份】:2011
【分类号】:P184.5;V476.3
【相似文献】
相关期刊论文 前10条
1 张淳民,相里斌,赵葆常,刘良云;干涉成像光谱仪技术的新发展[J];光学技术;2000年03期
2 张文喜;相里斌;袁艳;陶然;杜述松;陈曦;苏丽娟;;高速转镜干涉成像光谱仪[J];光子学报;2006年08期
3 阮萍;杨建峰;赵葆常;;干涉成像光谱仪的通量特性分析[J];光子学报;2007年02期
4 简小华;张淳民;祝宝辉;赵葆常;杜娟;;利用偏振干涉成像光谱仪进行偏振探测的新方法[J];物理学报;2008年12期
5 赵慧洁;贾国瑞;;姿态倾斜对时-空联合调制型干涉成像光谱仪成像质量的影响[J];光学学报;2008年03期
6 简小华;张淳民;赵葆常;张霖;朱兰艳;;利用偏振干涉成像光谱仪进行偏振检测的最佳角度分析[J];物理学报;2009年04期
7 赵葆常;杨建峰;薛彬;乔卫东;邱跃洪;;嫦娥一号干涉成像光谱仪的定标[J];光子学报;2010年05期
8 张淳民;灻伟健;赵葆常;;新型偏振干涉成像光谱仪噪声分析与评价[J];物理学报;2010年08期
9 曹玮亮;廖宁放;崔德琪;谭博能;;推扫型干涉成像光谱仪去除条带非均匀性的方法[J];光子学报;2011年04期
10 白鑫;张淳民;景春元;关小伟;曹芬;李艳娜;谢林利;;干涉成像光谱仪光通量的计算与分析[J];物理学报;2011年07期
相关会议论文 前10条
1 曹奇志;张淳民;任文艺;吴海英;;提高偏振干涉成像光谱仪图像质量的研究[A];2011西部光子学学术会议论文摘要集[C];2011年
2 穆廷魁;张淳民;;利用偏振干涉成像光谱仪进行偏振探测[A];中国光学学会2011年学术大会摘要集[C];2011年
3 荀毓龙;郑小兵;吴浩宇;;干涉成像光谱仪的响应定标问题[A];第十一届全国光学测试学术讨论会论文(摘要集)[C];2006年
4 张江;凌宗成;;基于嫦娥一号干涉成像光谱仪数据的月球光度模型[A];第十届全国月球科学与比较行星学陨石学与天体化学学术研讨会会议论文集[C];2012年
5 阮萍;杨建峰;赵葆常;;干涉成像光谱仪的通量特性分析[A];第十五届全国遥感技术学术交流会论文摘要集[C];2005年
6 杜述松;王咏梅;付利平;吕建工;杜国军;王永松;王英鉴;;干涉成像光谱仪的研究[A];中国空间科学学会空间探测专业委员会第十九次学术会议论文集(上册)[C];2006年
7 ;利用偏振干涉成像光谱仪探测偏振信息[A];2011西部光子学学术会议论文摘要集[C];2011年
8 曹玮亮;廖宁放;崔德祺;谭博能;;推扫型干涉成像光谱仪去除条带非均匀性的方法研究[A];中国光学学会2010年光学大会论文集[C];2010年
9 孟鑫;李建欣;朱日宏;姚良涛;周伟;;像面干涉成像光谱仪光谱复原方法研究[A];第十四届全国光学测试学术讨论会论文(摘要集)[C];2012年
10 白鑫;张淳民;谢林利;;干涉成像光谱仪光通量的分析与计算[A];2010年西部光子学学术会议摘要集[C];2010年
相关博士学位论文 前2条
1 张江;嫦娥一号干涉成像光谱仪数据处理和Aristarchus地区着陆点选择[D];山东大学;2011年
2 薛彬;CE-1干涉成像光谱仪信息处理及应用研究[D];中国科学院研究生院(西安光学精密机械研究所);2006年
相关硕士学位论文 前9条
1 许家榕;高光谱干涉成像光谱仪的研究[D];南京理工大学;2008年
2 苏星;干涉成像光谱仪定标技术研究[D];中国科学院西安光学精密机械研究所;2001年
3 陶然;干涉成像光谱仪调制度理论研究[D];中国科学院研究生院(西安光学精密机械研究所);2006年
4 毛雅亚;一种新型偏振干涉成像光谱仪的研究[D];北京交通大学;2009年
5 王志平;干涉成像光谱仪光谱应用技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2007年
6 张冬青;偏振干涉成像光谱仪中偏振干涉仪的性能分析及器件优化设计[D];曲阜师范大学;2002年
7 李湘眷;CE-1干涉成像光谱仪数据信息提取技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2009年
8 李湘滨;大孔径静态干涉成像光谱仪图像校正技术研究[D];清华大学;2004年
9 高莹莹;大孔径静态干涉成像光谱仪(LASIS)图像配准技术研究[D];中国科学院研究生院(西安光学精密机械研究所);2007年
,本文编号:1988499
本文链接:https://www.wllwen.com/kejilunwen/tianwen/1988499.html