星系中心大质量黑洞宇宙学演化模型
发布时间:2018-06-13 18:09
本文选题:星系 + 中心 ; 参考:《中国科学技术大学》2014年博士论文
【摘要】:本文主要讨论了在冷暗物质宇宙中暗物质晕等级成团模型下,星系中心的黑洞以暗物质晕并合树为背景的演化和增长过程。我们根据前人的工作,在扩展的PS(extended Press-Schechter)公式基础上发展了一套自己的Monte Carlo算法,建立了暗物质晕的并合树结构。星系中心的种子黑洞是原初星系中的POPⅢ恒星演化后期所形成。随着暗晕的并合,种子黑洞将会通过动力学粘滞转移到星系中心去,并带来一部分气体。这些黑洞在星系及暗晕的并合后,会在周围形成吸积盘,通过吸积盘吸积星系中的气体,从而质量增加。黑洞的活跃过程主要是星系的主并和过程导致的,然后黑洞会以Eddington吸积率持续吸积,直到达到所在星系的M一σ*关系限定的黑洞质量。如果两个并合的星系中都有黑洞,会在星系中心形成双黑洞系统,双黑洞的演化,最终的并合阶段还会辐射引力波。通过一系列的Monte Carlo模拟,我们能得到AGN(活动的黑洞)的光度函数,并和观测上的AGN的光度函数比较。我们用了几种黑洞吸积盘模型,把Monte Carlo模拟计算得到的理论值跟观测的AGN光度函数进行了比较。除了光度函数,也可以黑洞的质量密度。 我们根据已有的黑洞吸积物理,引入了直接吸积和随机吸积两种黑洞吸积模型在我们的模型中,研究了自旋对黑洞演化的影响以及大质量黑洞并合率的变化。直接吸积盘模型下,光度函数跟观测比偏离比较大。随机吸积模型下虽然能比较好的符合光度函数,但是还是有一定的偏离。我们又在直接吸积模型的基础上,我们考虑了MHD数值模拟结果对吸积盘的影响-黑洞吸积盘的数值模拟结果的影响(MHD吸积盘中吸积物质对黑洞自旋及质量增长和理论计算的不一样,因为磁场关系有所偏离),并用数值模拟得出的结果应用到黑洞吸积过程,模拟了星系中心大质量黑洞的演化过程,发现其结果比单纯的直接吸积模型以及随机吸积模型都要好,跟光测上的光度函数更符合。 有了接近真实的描述星系中心黑洞演化历史的模型,我们考虑了不同的双黑洞演化机制对其质量比的影响。双黑洞的演化分为三个阶段:1,各自和周围恒星的动力学粘滞而落入星系中心;2,动力学粘滞不有效后的三体作用抛恒星过程;3,引力波辐射阶段。在双黑洞演化的第二个阶段,如果存在共转气体吸积盘,星系中心的双黑洞质量比在双黑洞演化的前期和后期将会有明显的变化,其统计分布将会变平。我们拿不同的模拟结果跟SDSS观测到的并合中的星系中的黑洞质量比做了比较。发现模型中主并和条件p0.3的结果,对观测有较好的符合。在此基础上加入共转吸积盘的影响,看其质量比的统计分布,发现在双黑洞演化的前提,其质量比分布会变平;而在并合后期,其质量比分布中有更多的质量比接近1的双黑洞。 在成功的建立了黑洞和暗物质晕宇宙学演化模型后,我们在此基础上,还对空间引力波探测器(ALIA)参数空间的设定做了一定的讨论,争取能让空间探测器能对高红移黑洞成长模型和演化做一定的限制。在ALIA的臂长比LISA小一个量级的情况下,降低对仪器的要求后,还能让ALIA对于中等质量的双黑洞并合率的探测率比LISA要好不少,为仪器设计提供了很好的工具。以后还将进行更多的引力波源方面的研究。 模型所用的宇宙学参数如下:QM=0.3,ΩA=0.7,h=0.7,Ωbh2=0.02,σ8=0.93和n=1.其中h的定义如下H0=h×100km s-1Mpc-1.
[Abstract]:This paper mainly discusses the process of evolution and growth of black holes in the center of galaxies under the dark matter halo of the dark matter halo in the universe in the cold dark matter universe. Based on the previous work, we developed a set of its own Monte Carlo algorithm based on the extended PS (extended Press-Schechter) formula, and established the dark objects. The seed black hole in the center of the galaxy is formed in the late stage of the evolution of the POP iii star in the original galaxy. With the combination of dark halo, the seed black hole will transfer to the center of the galaxy by kinetic viscosity and bring a part of the gas. The disk accumulates the gas in galaxies and increases the mass of the galaxies. The active process of the black hole is mainly caused by the principal and process of the galaxies, and then the black hole will continue to accret with the Eddington accretion rate until the mass of the black hole defined by the M 1 * relationship of the galaxy. If there are black holes in the two combined galaxies, the double black will be formed at the center of the galaxy. Through a series of Monte Carlo simulations, we can get the photometric function of the AGN (active black hole) and compare with the photometric function of the observed AGN. We use several black hole accretion disk models to simulate the theoretical values obtained by the Monte Carlo simulation and the observed A The luminosity function of GN is compared. Besides the luminosity function, it can also be the mass density of black hole.
Based on the existing black hole accretion physics, we introduce two black hole accretion models of direct accretion and random accretion in our model. We study the influence of spin on the evolution of black hole and the change of the coincidence rate of massive black holes. Under the direct accretion disk model, the luminosity function is much larger than the observation ratio. The ratio of random accretion model is comparable to that of the random accretion model. On the basis of the direct accretion model, we consider the effect of the MHD numerical simulation on the accretion disk - the effect of the numerical simulation of the black hole accretion disk (the accretion substance in the accretion disk of the accretion disk of the MHD accretion disk is different to the black hole spin and the mass growth and the theoretical calculation, " The magnetic field relationship is deviated from the black hole. The numerical simulation results are applied to the black hole accretion process, and the evolution process of the massive black hole in the center of the galaxy is simulated. It is found that the result is better than the simple direct accretion model and the random accretion model, which is more consistent with the photometric function in the light measurement.
With a near real model describing the evolution history of the galaxy's central black hole, we consider the effect of different double black hole evolution mechanisms on the mass ratio. The evolution of double black holes is divided into three stages: 1, the kinetic viscosity of each and the surrounding stars falls into the galaxy center; 2, the trisomy after the dynamic viscosity is not effective. In the second stages of the twin black hole evolution, if there is a co rotating gas accretion disk, the mass ratio of the double black holes in the center of the galaxy will be changed obviously in the early and late stages of the evolution of the double black holes, and the statistical distribution will be flat. We take different simulation results with the black in the combined Galaxy observed by SDSS. The results of the cavities are compared. The results of the principal and conditional p0.3 in the model are found to be in good agreement with the observation. On this basis, the effect of the confluent Accretion Disc is added to the statistical distribution of the mass ratio, and it is found that the mass ratio of the double black hole evolution will be more flat than the distribution, and the mass ratio is more than the distribution in the later period. A double black hole close to 1.
After the successful establishment of the cosmological evolution model of black hole and dark matter, we have also discussed the setting of space gravitational wave detector (ALIA) parameter space on this basis, in order to allow space detectors to limit the model and evolution of the Gao Hongyi black hole growth. In ALIA, the length of the arm is one order of magnitude smaller than that of LISA. In the case of reducing the requirement of the instrument, the ALIA can also make a good tool for the design of the medium quality double black hole and coincidence rate than that of LISA. More research on the gravitational wave source will be carried out in the future.
The cosmological parameters used in the model are as follows: QM=0.3, Omega A=0.7, h=0.7, bh2=0.02, 8=0.93 and n=1., where h is defined as H0=h * 100km s-1Mpc-1.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2014
【分类号】:P145.8
【共引文献】
相关期刊论文 前1条
1 杨爱华;;类星体形成的半解析模型[J];天文学报;2014年01期
相关博士学位论文 前2条
1 郝景萌;伽玛射线暴与恒星形成率的相关性研究[D];中国科学技术大学;2013年
2 王煈;引力波天文学及数据处理相关问题[D];南京大学;2013年
相关硕士学位论文 前1条
1 Gleniese E.McKenzie;[D];中国科学技术大学;2014年
,本文编号:2014938
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2014938.html