当前位置:主页 > 科技论文 > 天文学论文 >

爆发日珥和太阳耀斑的观测研究

发布时间:2018-06-23 18:14

  本文选题:日珥爆发的临界高度 + 耀斑的极紫外后相 ; 参考:《中国科学技术大学》2013年博士论文


【摘要】:爆发日珥和耀斑是太阳大气中常见的活动现象,它们都与日冕物质抛射(CME)有着紧密的联系,其中爆发日珥可以被看做是CME在低日冕处的活动表现,而耀斑常常伴随有CME的爆发,因而对这两种事件的研究不单能够帮助理解太阳大气活动中的基本物理过程,还能提高对CME产生机制的认知,从而提高空间天气预报的准确度。本文主要以分析观测资料为主结合理论分析,对爆发日珥和耀斑这两种现象分别进行了研究。 1,统计分析了日珥爆发或失稳的临界高度: 首先引用了一套可以从太阳极紫外(EUV)观测图像中自动识别和追踪日珥形态和运动学特征的系统SLIPCAT(Solar LImb Prominences CAtcherTracker),然后从SLIPCAT对STEREO(日地关系观测台,Solar TErrestrial RElations Observatory)B星在2007年7月到2009年12月期间的观测图像的应用运行结果中,挑选了362个追踪较好的且高度达到或者超过了0.2个太阳半径的日珥事件来进行统计研究,结果发现在所统计的日珥事件中受扰动日珥(Disrupted Prominences,DPs)占了约71%,而DPs中有42%爆发失败,同时有89%的事件经历了一个突然解稳(Sudden Destabilization,SD)的过程。通过对DPs的详细分析,我们得到了一下几个结论:大部分DPs的临界高度范围为0.06~0.14个太阳半径,同时存在着两个最有可能的临界高度,分别为0.13和0.19个太阳半径,即当日珥达到这两个高度时,平衡很有可能遭到破坏,日珥将变得不再稳定;爆发日珥(Eruptive Prominences,EPs)的爆发速度存在着上限,且这个上限速度会随着高度和质量的增加以幂律的形式降低,爆发日珥的动能也存在着上限,它与日珥的临界高度成反比;稳定日珥(Stable Prominences,SPs)要比DPs长且重,但它们的高度往往不会超过0.4个太阳半径;有62%的EPs与CME相关,但是与CME相关和无关的EPs在SLIPCAT得到的表观参数中并无明显的区别。 2,研究了耀斑极紫外后相辐射的日面来源以及物理机制: 按照耀斑的软X射线通量的观测曲线,耀斑一般被认为有两个阶段:一是快速上升的脉冲相,又被称为上升相;二是缓慢下降的恢复相,又被称为下降相或渐变相。近年来,一个新的阶段,耀斑的极紫外后相,在SDO(太阳动力学观测台,Solar Dynamic Observatory)上天以后被发现了,它的观测表现为耀斑主相过后的极紫外观测曲线上会出现另一个大的峰值,为了探寻EUV后相的来源,我们利用AIA(太阳大气成像仪,Atmospheric Imaging Assembly)的多波段高分辨率图像观测资料对两个有着EUV后相的耀斑事件,2010年10月16日的M2.9级耀斑和2011年2月18日的M1.4级耀斑,进行了详细的分析,并得到了以下几个结论:1,EUV后相的辐射并非来自于耀斑环,而是来自于比耀斑环更高、更大的同一活动区中的环系统,并把它称之为耀斑后相环;2,耀斑的后相环与主相环所经历的热过程不同,耀斑主相环几乎同时在各个温度谱线的观测中增亮显现,而后相环会依次出现在温度由高往低的各个波段观测图中,延迟时间超过一个小时;3,耀斑的后相环与主相环在磁结构上是相连的,它们共同组成了一个非对称的磁四极场位形;4,AIA的紫外波段观测显示后相环靠近主相环的足点与主相环的足点几乎同时增亮,而远离主相环的足点的增亮则有大概一分钟的延迟。从这些结果中,我们认为耀斑的后相与主相之间存在着一个因果关系:当主相环发生重联时,推动环上的磁拱上升而造成磁拱与后相环的重联,从而加热了后相环,重联结束后,主相环迅速冷却,而后相环则经历了一个长时间的缓慢冷却过程,最终形成了观测到的EUV后相。 3,提出了一种新的耀斑分类方法并建立了耀斑列表: 从GOES(近地同步环境监测卫星,Geostationary Operational Environ-ment Satellite)软X射线通量观测曲线出发,结合SDO的观测资料,我们提出了一种新的耀斑分类方法,主要把耀斑分为四类,分别为:1,标准爆发事件(Standard Eruptive,S-E),即指有CME伴随的,在GOES观测曲线上表现为长恢复相的,足点亮带可观测到明显分离的,在日冕图像中可观测到上升磁环的,在EUV的观测曲线上随着谱线对应温度的降低而峰值响应有所延迟的,满足标准耀斑模型的耀斑事件;2,标准束缚事件(Standard Confined,S-C),指无CME伴随的,在GOES曲线上的恢复相很短的,足点观测未见分离的,日冕图像中观测不到上升磁环的,EUV观测曲线中未见峰值随温度降低而延迟的耀斑事件;3,非标准爆发事件(Non-Standard Eruptive,NS-E),指有着CME伴随,但不符合一项或多项标准爆发事件的其他观测特征的耀斑事件,部分这类事件是会伴随有EUV后相;4,非标准束缚事件(Non-Standard Confined, NS-C),没有CME伴随,但其他的观测特征与标准不爆发事件不符,这类事件往往在GOES曲线上也表现为长的恢复相,在EVE观测中会出现极紫外后相,且与S-E事件相同,在日面边缘处能在高温谱线上观测到磁绳结构的增亮和上升,但不同的是,在NS-C事件中出现的磁绳会在上升过程中达到新的平衡,从而没有真正爆发出去。由这个新的分类出发,我们给出了从2010年5月到2011年12月期间发生的所有M级和X级耀斑事件的列表,表中给出了各个耀斑的观测特征和归属类别。
[Abstract]:Eruption prominences and flares are common phenomena in the solar atmosphere. They are closely related to coronal mass ejection (CME). The eruption prominence can be seen as the activity of CME in the low corona, and the flare often accompanied by an outbreak of CME, so the study of these two events can not only help to understand the solar atmosphere. The basic physical process in motion can improve the cognition of the CME production mechanism and improve the accuracy of the spatial weather forecast. This paper mainly studies the two phenomena of the eruption of prominence and flare based on the analysis of the observation data and the theoretical analysis.
1, the critical height of prominence outburst or instability is analyzed statistically.
A system SLIPCAT (Solar LImb Prominences CAtcherTracker), which can automatically identify and trace the morphological and kinematic characteristics of prominence from the EUV observation image, is first introduced, and then from SLIPCAT to STEREO (daily earth relation Observatory, Solar TErrestrial RElations Observatory) from July 2007 to December 2009 In the application of the observed images, 362 prominence events, which are well tracked and high or more than 0.2 solar radii, are selected for statistical research. The results show that the Disrupted Prominences (DPs) accounts for about 71% in the prominence events, while 42% in DPs failed, and 89% of the events were at the same time. The part experienced a process of Sudden Destabilization (SD). Through a detailed analysis of DPs, we got a few conclusions: the critical height of most DPs is 0.06 to 0.14 solar radii, and there are two most likely critical heights, 0.13 and 0.19 solar radii respectively, when the prominence is reached. At these two heights, the balance is likely to be destroyed and the prominence will become no longer stable; the explosion rate of the burst prominence (Eruptive Prominences, EPs) has an upper limit, and the upper limit speed will decrease with the increase of the power law as the height and mass increase, and the kinetic energy of the eruption prominence also has an upper limit, which is at the critical height of the prominence. Inverse ratio; the stable prominence (Stable Prominences, SPs) is longer and heavier than DPs, but their height is often not more than 0.4 solar radii; 62% of EPs is associated with CME, but there is no obvious difference in the apparent parameters of SLIPCAT obtained by CME related and unrelated EPs.
2, the source and physical mechanism of the extreme ultraviolet phase radiation of flares are studied.
According to the observation curve of the soft X ray flux of the flare, the flare is generally considered to have two stages: one is the fast rising phase of the pulse, and also called the ascending phase; the two is a slow descending phase, which is also called a descending phase or a gradual phase. In recent years, a new phase, the extreme ultraviolet phase of the flare, is in the SDO (Solar Dynamics Observatory, Solar D) Ynamic Observatory) was discovered later in the sky, and its observation showed that there would be another big peak on the extreme ultraviolet observation curve after the main phase of the flare. In order to explore the source of the EUV phase, we used the AIA (solar atmospheric imager, Atmospheric Imaging Assembly) and the multiband high resolution image observation data for the two EUV. The flare events of the posterior phase, the M2.9 grade flare of October 16, 2010 and the M1.4 grade flare in February 18, 2011 are analyzed in detail, and the following conclusions are obtained: 1, the radiation of the EUV posterior phase is not from the flare ring, but from the ring system in the same active area, which is higher and larger than the flare ring, and is called the post flare phase. 2, the heat process of the rear phase ring of the flare is different from that of the main phase ring. The main phase ring of the flare is brightened almost at the same time in the observation of each temperature spectrum. The back phase ring will appear in each wave band of the temperature from high to low. The delay time is more than one hour; 3, the rear phase ring of the flare and the main phase ring are on the magnetic structure. Together, they constitute an asymmetrical magnetic quadrupole shape; 4, the observation of the AIA's ultraviolet band shows that the foot point near the main phase ring is almost simultaneously brightened by the foot point of the main phase ring, and the brightness of the foot point far away from the main phase ring is about one minute delay. From these results, we think the post phase of the flare and the main phase There is a causal relationship between the reconnection of the magnetic arch on the driving ring and the reconnection between the magnetic arch and the rear phase ring when the main phase ring is reconnected, thus heating the back phase ring, and after the reconnection ends, the main phase ring rapidly cooled, and the back phase ring experienced a long slow cooling process and finally formed the observed EUV phase.
3, a new classification method for flares is proposed and a list of flares is established.
Starting from the soft X ray flux observation curve of GOES (near earth synchronous environment monitoring satellite, Geostationary Operational Environ-ment Satellite), combined with the observation data of SDO, we propose a new method for the classification of flares, which are divided into four categories: 1, standard explosive events (Standard Eruptive, S-E), that is, CME accompanied The GOES observation curve shows a long recovery phase. The foot bright band can be observed to be clearly separated. The rising magnetic ring can be observed in the coronal image. The peak response of the EUV is delayed with the decrease of the spectrum line corresponding to the temperature of the line, and the flare event of the standard flare mold type is satisfied; 2, the standard binding event (Standard Confi). Ned, S-C), refers to the non CME accompanying, the recovery phase on the GOES curve is very short, the foot point observation has not been separated, the coronal image does not observe the rising magnetic ring, the EUV observation curve does not have the flare event delayed by the temperature decreasing in the EUV observation curve; 3, the non standard explosion event (Non-Standard Eruptive, NS-E), refers to the CME adjoint, but does not conform to one item. Some of the other observational flare events of a number of standard outbreaks, some of which are accompanied by a EUV phase; 4, the non standard binding event (Non-Standard Confined, NS-C), without CME, but other observational features are inconsistent with the standard non explosive events, and these events are often shown as a long recovery phase on the GOES curve, in E In the VE observation, the ultra violet phase will appear, and the same as the S-E event, the intensity and the rise of the magnetic rope structure can be observed on the high temperature line at the edge of the surface. But the magnetic rope in the NS-C event will reach a new balance in the process of rising, which is not really exploded. A list of all M and X flare events from May 2010 to December 2011 is presented. The observational characteristics and attribution categories of each flare are given in the table.
【学位授予单位】:中国科学技术大学
【学位级别】:博士
【学位授予年份】:2013
【分类号】:P182.5

【共引文献】

相关期刊论文 前10条

1 景海荣,杨志良;等离子体中磁场的本性[J];北京师范大学学报(自然科学版);2005年03期

2 丁宗华;吴健;孙树计;陈金松;班盼盼;;汶川大地震前电离层参量的变化特征与分析[J];地球物理学报;2010年01期

3 王家龙,孙静兰;太阳活动及其对地球环境的影响[J];第四纪研究;2002年06期

4 郝娟;张枚;;用Filter Ratio方法计算太阳日冕温度[J];德州学院学报;2008年04期

5 温卫斌,李怀峰,孙才红,金声震;空间太阳望远镜太阳导行镜原理样机的研制[J];光电工程;2005年03期

6 章敏;王东;;太阳过渡区紫外光谱的观测与诊断[J];光谱学与光谱分析;2011年12期

7 玄伟佳;王东光;邓元勇;张志勇;孙英姿;;光线追迹法在双折射滤光器误差分析中的应用[J];光学精密工程;2008年05期

8 肖江;胡柯良;林佳本;申基;邓元勇;;用大面阵CCD实现全日面像自动导行[J];光学精密工程;2008年09期

9 王宇舟,金声震;空间太阳望远镜偏振光测量技术[J];光学技术;2004年02期

10 贾志宏;金声震;耿立红;王景宇;;空间太阳望远镜星载图像压缩系统的研究[J];光学技术;2006年S1期

相关博士学位论文 前10条

1 陈彩霞;基于源区位置统计结果的日冕物质抛射观测特征研究[D];中国科学技术大学;2011年

2 王璞;太阳耀斑过程中的磁场变化研究[D];南京大学;2011年

3 张绍华;并行自适应技术在背景太阳风及快速磁场重联数值模拟中的应用研究[D];中国科学院研究生院(空间科学与应用研究中心);2011年

4 杨利平;背景太阳风的三维数值模拟研究[D];中国科学院研究生院(空间科学与应用研究中心);2011年

5 何宏青;太阳高能粒子在三维行星际磁场中传播的研究[D];中国科学院研究生院(空间科学与应用研究中心);2011年

6 杨林;极紫外太阳望远镜的检测方法研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2011年

7 敦金平;太阳活动区磁场测量和非势特征研究论文[D];中国科学院研究生院(云南天文台);2002年

8 罗庆宇;太阳日冕波动加热机制研究[D];中国科学院研究生院(空间科学与应用研究中心);2003年

9 陈波;空间极紫外太阳望远镜光学性能研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2003年

10 占腊生;太阳长期活动特征的研究[D];中国科学院研究生院(云南天文台);2003年

相关硕士学位论文 前10条

1 王勃;光敏晶体管自动日照计技术研究[D];南京理工大学;2011年

2 章磊;太阳活动和EUV波现象研究[D];中国科学技术大学;2011年

3 石红雨;等离子体波与波相互作用下的谱线加宽[D];南京师范大学;2002年

4 张健;利用GPS对太阳耀斑电离层响应的监测和研究[D];中国科学院研究生院(测量与地球物理研究所);2002年

5 周桂萍;日冕物质抛射和太阳表面活动的关系[D];安徽大学;2003年

6 钟晓春;太阳射电爆发纤维精细结构的观测与理论研究[D];西南交通大学;2003年

7 梁红飞;1981年太阳西边缘耀斑后环物理量场的研究[D];中国科学院研究生院(云南天文台);2003年

8 苏宙平;空间极紫外望远镜在轨校准技术研究[D];中国科学院研究生院(长春光学精密机械与物理研究所);2004年

9 尉敏;太阳辐射全光谱模拟人工光源的实验研究[D];西安建筑科技大学;2004年

10 赵海娟;太阳活动预报[D];中国科学院研究生院(云南天文台);2004年



本文编号:2057981

资料下载
论文发表

本文链接:https://www.wllwen.com/kejilunwen/tianwen/2057981.html


Copyright(c)文论论文网All Rights Reserved | 网站地图 |

版权申明:资料由用户6c550***提供,本站仅收录摘要或目录,作者需要删除请E-mail邮箱bigeng88@qq.com