引力与空间层展
[Abstract]:The discovery of the thermodynamics of black holes reveals a deep connection between gravitational and thermodynamic systems, and physicists begin to speculate, Gravity may be a layer representation rather than a basic force. In 1995 Jacobson derived the Einstein field equation from the local Rindler horizon. On the other hand, by studying the entropy of black hole, Susskind and t Hoof put forward the holographic principle, which holds that the degree of freedom of a d-1-dimensional gravitational system corresponds to the degree of freedom of a non-gravitational system on its d-dimensional boundary. The holographic principle is considered to be a basic principle of quantum gravity, and it is actually one of the bases of the theory of layering. Padmanabhan has recently applied the idea of stratification of gravity to cosmology, and has proposed the principle of holographic equalization, which holds that the expansion of the universe is due to the difference between surface and volume degrees of freedom. The standard Friedmann equation can be obtained by applying the holographic equalization to the Hubble horizon of the FRW universe. By modifying the spatial layer expansion equation proposed by Padmanabhan, it can also be extended to the high-dimensional Einstein gravitational Gauss-Bonnet gravitation and the more general Lovelock gravitation. In addition, the difference between the surface and volume degrees of freedom in the Padmanabhan equation can be replaced by its function, which is called the more general holographic equalization law. However, these generalizations can only obtain the Friedmann equation of the FRW universe under space flatness. In order to derive the Friedmann equation of arbitrary space curvature, it is necessary to modify the equation and apply it to the apparent horizon. Through the analysis of this new view of spatial layering and the generalization mentioned above, we find that in fact these different modifications can be described by a unified equation, and they are in fact special cases of the equation. Furthermore, we apply the equation to the FRW universe under f (R) gravity and deformed Horava-Lifshitz gravity, and obtain the modified dynamic evolution equation from the viewpoint of stratification. Under the corresponding limit conditions, the dynamic equations can be retreated to the general relativistic case and show good consistency. On the other hand, because of the generalization of the high dimensional Einstein gravity Gauss-Bonnet gravity and Lovelock gravity, the holographic equalization principle applied to the Hubble horizon can not obtain the Friedmann equation of arbitrary space curvature. We rederive the expression of the holographic equalization principle under the apparent horizon and successfully obtain the Friedmann equation of arbitrary space curvature. We believe that this difference may be due to the fact that the holographic equalization principle is actually applicable to the apparent horizon but no longer to the ubble horizon under these generalized gravitational theories. Finally, according to Padmanabhan, the new view of layering provides a new paradigm for cosmology. We examine the de Sitter universe in the view of spatial layering, where the holographic equalization principle is satisfied. The limiting form of state parameter 蠅 and energy density is obtained. Since the deSitter phase may be formed in the late universe under both the early cosmic explosion and the dynamic dark energy, we believe that this will bring constraints to both the skyrocketing model and the dark energy model.
【学位授予单位】:兰州大学
【学位级别】:硕士
【学位授予年份】:2015
【分类号】:P145.8;P131
【相似文献】
相关期刊论文 前10条
1 张镇九;;关于黑洞热力学的四个定律[J];华中师院学报(自然科学版);1982年01期
2 朱彤;;普通热力学四定律与黑洞热力学四定律[J];中国医药指南;2009年03期
3 闫荣义;黑洞热力学研究的历史及现状[J];南都学坛;1999年03期
4 邓昭镜;;关于黑洞热力学第0定律[J];西南师范大学学报(自然科学版);2006年05期
5 邓昭镜;负能谱中的黑洞热力学[J];西南师范大学学报(自然科学版);2004年03期
6 赵仁,张丽春;黑洞热力学关系式[J];雁北师范学院学报;2002年05期
7 汪定雄;熵能比存在上限吗?[J];湖北民族学院学报(自然科学版);1990年01期
8 邓昭镜;J D Bekenstein黑洞热力学理论的内在桎梏[J];西南师范大学学报(自然科学版);2005年01期
9 程素君;翟忠旭;刘文彪;;静态球对称黑洞热力学与爱因斯坦场方程[J];大学物理;2011年01期
10 郭守元;;黑洞热力学与Hawking辐射[J];山东教育学院学报;1996年02期
相关博士学位论文 前2条
1 杨学军;黑洞热力学的相关研究及时空的Killing约化[D];北京师范大学;2003年
2 贺锋;关于黑洞熵和穿越虫洞的一些研究[D];北京师范大学;2002年
相关硕士学位论文 前6条
1 艾稳元;引力与空间层展[D];兰州大学;2015年
2 李守龙;ω-变形的Kaluza-Klein超引力理论中的静态双荷AdS黑洞热力学研究[D];西华师范大学;2015年
3 李子敬;黑洞热力学与η-ξ时空[D];大连理工大学;2005年
4 刘小芳;AdS黑洞热力学中的临界现象[D];湖南师范大学;2014年
5 吴广;时空热力学与熵[D];中国科学技术大学;2011年
6 于添翼;类Lifshitz引力的Lovelock修正[D];宁波大学;2011年
,本文编号:2181534
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2181534.html