三阶Lovelock引力中的黑洞
[Abstract]:In the flat (flat) and Anti-de Sitter spacetime, the third-order Lovelock static black hole solution is obtained and the mass, temperature and entropy of the black hole are calculated. By taking the special coefficients of Gauss-Bonnet and third-order Lovelock terms, we obtain the special solutions of black holes in two kinds of space-time. According to these two special solutions, the thermodynamic analysis of the black hole is carried out under the condition that the coefficients of the Gauss-Bonnet term are positive (伪 20) and negative (a 20), respectively. For the third-order Lovelock black hole with flat spacetime, the temperature and entropy of the black hole in 7-dimensional spacetime are modified based on the Hamilton-Jacobian method. For a positive hypersurface of constant curvature, that is, KG 1, there is an intermediate stable phase for a black hole with 伪 20 in seven, eight, and nine dimensional spacetime. In higher dimensional spacetime, there is no black hole solution. When a 20, the black hole exists inside and outside two event limits, extreme black hole or bare singularity when the coefficient is different. However, for negative hypersurfaces of constant curvature, that is, KG -1, there is no black hole solution in the case of 伪 20 and a 20. For the third-order Lovelock black hole in anti-de Sitte spacetime, there are three different event horizon structures K0, 卤1. The black hole (a20) is thermodynamically stable in the whole region, and the black hole (a20) has an intermediate unstable phase. For the positive hypersurface of constant curvature, that is, the black hole (a20) of KG 1, 7 dimensional spacetime, there is an intermediate unstable phase, and in 8 dimensional spacetime, when 伪 2 is less than a certain value, the black hole has two thermodynamically unstable regions. This is similar to the region of thermodynamic stability of higher dimensional spacetime. For a _ 2O, there is an intermediate unstable phase in the spherical seven-dimensional black hole when the coefficient is small, but when the coefficient is large, the black hole is globally stable. In higher dimensional spacetime, black holes have an intermediate unstable phase. In addition, the thermodynamic properties and conserved quantities of black holes are independent of Lovelock coefficients and degenerate to the case of general relativity when k = 0. Because of the high nonlinearity of the Lovelock equation of gravitational motion, it is difficult to obtain the simple expression of the black hole rotational solution. By introducing a small angular momentum into a static system, we can study the slowly rotating Lovelock black hole and find that the t 蠁 component of the equation of motion involves functions g (r) and c (r). In addition, the non-diagonal component of the electromagnetic field Zhang Liang is related to the function c (r). The analytical solution of the charged Gauss-Bonnet slowly rotating black hole is obtained by considering the concrete expression of the action quantity, and the slow rotation solution of the uncharged and charged third-order Lovelock black hole is obtained by using this method. Then the angular momentum, magnetic dipole moment and magnetic cycle ratio of Gauss-Bonnet black hole and third-order Lovelock black hole are calculated respectively. It is found that these higher-order derivative curvature terms do not affect the magnetic cycle ratio of black hole. In addition, it is very difficult to solve the slow rotation solution by the equation of motion if we consider more related terms of the Lovelock action. However, the slow rotation of Gauss-Bonnet black hole in flat spacetime is obtained by direct variation. We find that the event horizon of the black hole and the infinite redshift surface no longer coincide when the rotation of the black hole is not very slow.
【学位授予单位】:西北大学
【学位级别】:硕士
【学位授予年份】:2011
【分类号】:P145.8
【共引文献】
相关期刊论文 前10条
1 赵峥;桂元星;刘辽;;黑洞热辐射和内禀奇异区的温度[J];北京师范大学学报(自然科学版);1983年01期
2 赵峥;;什么是黑洞热力学第零定律[J];北京师范大学学报(自然科学版);1991年03期
3 李立新;王永成;赵峥;刘辽;;星系喷流的一种可能能源机制:两个黑洞叠加时的Hawking辐射[J];北京师范大学学报(自然科学版);1993年03期
4 赵峥,朱建阳;黑洞熵应该满足能斯特定理[J];北京师范大学学报(自然科学版);1998年04期
5 程素君,赵峥;匀加速直线运动的稳态Kerr黑洞的热性质[J];北京师范大学学报(自然科学版);1999年01期
6 刘文彪;Reissner-Nordstrom黑洞与面积定理[J];北京师范大学学报(自然科学版);1999年03期
7 高长军,赵峥;用膜模型计算Schwarzschild -de Sitter黑洞的熵[J];北京师范大学学报(自然科学版);2000年03期
8 刘文彪,赵峥;非热平衡Reissner-Nordstrom-de Sitter黑洞的熵[J];北京师范大学学报(自然科学版);2000年05期
9 刘文彪,贺晗;用brick-wall方法计算黑洞熵的再讨论[J];北京师范大学学报(自然科学版);2001年03期
10 贺晗,赵峥;匀加速直线运动黑洞的熵[J];北京师范大学学报(自然科学版);2002年01期
相关会议论文 前3条
1 李睿奇;祝雪丰;梁彬;李勇;程建春;;声黑洞结构[A];中国声学学会第九届青年学术会议论文集[C];2011年
2 李翔;;黑洞会完全蒸发吗?[A];黑洞物理研讨会论文集[C];2002年
3 ;On Diffeomorphism Invariance and Black Hole Mass Formula[A];Fields, Gravity and Multisymplectic Structures--Proceedings of CCAST (World Laboratory) Workshop[C];2001年
相关博士学位论文 前10条
1 曹巧君;Ho(?)ava-Lifshitz引力的时空热力学阐释[D];浙江大学;2011年
2 彭俊金;(哥德尔)黑洞的霍金辐射、量子反常与Kerr/CFT对应性[D];华中师范大学;2011年
3 陈德友;黑洞霍金辐射、对偶性及相关问题的研究[D];电子科技大学;2011年
4 吴双清;动态黑洞的霍金辐射与标量场方程的精确解[D];华中师范大学;2002年
5 史旺林;非对称磁场重联的Cluster数值分析及一个宇宙线源模式[D];中国科学院研究生院(空间科学与应用研究中心);2005年
6 贺锋;关于黑洞熵和穿越虫洞的一些研究[D];北京师范大学;2002年
7 郭广海;弯曲时空中的标量场[D];大连理工大学;2005年
8 高长军;黑洞熵、黑洞的de Broglie-Bohm量子化及Quintessence宇宙学[D];中国科学院研究生院(上海天文台);2003年
9 常加峰;半经典近似与黑洞低频似正规模[D];中国科学院研究生院(上海天文台);2006年
10 刘文彪;用brick-wall方法计算黑洞熵及其相关问题的研究[D];北京师范大学;2000年
相关硕士学位论文 前10条
1 李鹏;Lovelock-Born-Infeld黑洞及其热力学研究[D];西北大学;2011年
2 王传彪;黑洞研究中的数学方法[D];吉林大学;2011年
3 李适;量子反常方法计算2+1维黑洞背景下费米场的霍金辐射[D];兰州大学;2011年
4 彭家辉;宇宙学中的霍金辐射[D];上海师范大学;2011年
5 丁少航;广义相对论的应用:黑洞的霍金辐射与GPS导航[D];南昌大学;2011年
6 况小梅;引力的全息性质及其相关问题的研究[D];南昌大学;2011年
7 贾冬燕;DBI-AdS时空中黑洞的热力学[D];宁波大学;2010年
8 于添翼;类Lifshitz引力的Lovelock修正[D];宁波大学;2011年
9 陈松柏;稳态黑洞的二级相变[D];湖南师范大学;2002年
10 李子敬;黑洞热力学与η-ξ时空[D];大连理工大学;2005年
,本文编号:2189479
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2189479.html