基于时域法的月球卫星引力梯度测量恢复方法研究
发布时间:2018-08-18 16:42
【摘要】:月球引力场是月球的基本物理特征,在月球探测研究活动中起着重要作用。确定高精度月球引力场对于进一步论证月球起源,绕月卫星轨道及登月地点的选择有重要意义。随着SELENE和GRAIL卫星的成功发射,世界开始新一轮月球引力场探测热潮。 本文主要是基于月球卫星引力梯度测量技术,研究利用月球卫星引力梯度测量数据恢复月球引力场的理论、方法及解算实例。本文第一部分主要介绍了月球引力场探测的背景与意义。第二部分,研究了利用引力梯度测量数据恢复月球引力场的理论方法,主要包括空域最小二乘法、时域时域法、时域频域法求解月球引力场原理与数学模型。第三部分,依据时域最小二乘误差分析法推导了月球引力场模型误差计算公式,基于时域时域法分析了法方程矩阵的块对角性。基于时域最小二乘误差分析法,分析讨论了星载梯度仪精度、卫星轨道高度、数据采样周期及采样间隔对恢复月球引力场精度的影响。给出梯度测量最优方案:梯度仪测量精度10mE/Hz~(1/2),轨道高度50km,数据采样周期28天,采样间隔5s。此方案最终能恢复335阶月球引力场,,空间分辨率达到14km,在250阶处引力异常累积误差和月球水准面累积误差分别是1.42mGal和6.77cm。第四部分,以最优方案指标为参考,进行卫星轨道和梯度张量Vzz观测数据的模拟试算,采用预处理共轭梯度法恢复出100阶月球引力场。从而验证了时域时域法恢复月球引力场的可行性。
[Abstract]:Lunar gravitational field is the basic physical feature of the moon and plays an important role in lunar exploration. The determination of high-precision lunar gravitational field is of great significance to further demonstrate the origin of the moon, orbit around the moon and the location of lunar landing. With the successful launch of SELENE and GRAIL satellites, the world began a new wave of lunar gravitational field exploration. Based on the gravity gradient measurement technique of lunar satellite, this paper studies the theory, method and calculation example of recovering the gravitational field of the moon by using the gravity gradient measurement data of lunar satellite. The first part of this paper mainly introduces the background and significance of lunar gravitational field exploration. In the second part, the theory and method of recovering lunar gravitational field by gravity gradient measurement data are studied, including spatial least square method and time-frequency domain method to solve the principle and mathematical model of lunar gravitational field. In the third part, based on the least square error analysis method in time domain, the formula for calculating the error of lunar gravitational field model is derived, and the block diagonality of the normal equation matrix is analyzed based on the time-domain method. Based on the least square error analysis method in time domain, the effects of satellite gradiometer precision, satellite orbit altitude, sampling period and sampling interval on the accuracy of lunar gravitational field recovery are analyzed and discussed. The optimal scheme of gradient measurement is given: the measuring accuracy of gradiometer is 10mE / Hz1 / 2, the orbit height is 50km, the sampling period is 28 days and the sampling interval is 5s. This scheme can finally restore 335th order lunar gravitational field with a spatial resolution of 14km. The accumulative errors of gravity anomaly and lunar geoid are 1.42mGal and 6.77cm respectively at 250th order. In the fourth part, the satellite orbit and gradient Zhang Liang Vzz data are simulated and calculated with the reference of the optimal scheme. The preconditioned conjugate gradient method is used to recover the 100th order lunar gravitational field. The feasibility of recovering the lunar gravitational field by time domain method is verified.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P184
本文编号:2190063
[Abstract]:Lunar gravitational field is the basic physical feature of the moon and plays an important role in lunar exploration. The determination of high-precision lunar gravitational field is of great significance to further demonstrate the origin of the moon, orbit around the moon and the location of lunar landing. With the successful launch of SELENE and GRAIL satellites, the world began a new wave of lunar gravitational field exploration. Based on the gravity gradient measurement technique of lunar satellite, this paper studies the theory, method and calculation example of recovering the gravitational field of the moon by using the gravity gradient measurement data of lunar satellite. The first part of this paper mainly introduces the background and significance of lunar gravitational field exploration. In the second part, the theory and method of recovering lunar gravitational field by gravity gradient measurement data are studied, including spatial least square method and time-frequency domain method to solve the principle and mathematical model of lunar gravitational field. In the third part, based on the least square error analysis method in time domain, the formula for calculating the error of lunar gravitational field model is derived, and the block diagonality of the normal equation matrix is analyzed based on the time-domain method. Based on the least square error analysis method in time domain, the effects of satellite gradiometer precision, satellite orbit altitude, sampling period and sampling interval on the accuracy of lunar gravitational field recovery are analyzed and discussed. The optimal scheme of gradient measurement is given: the measuring accuracy of gradiometer is 10mE / Hz1 / 2, the orbit height is 50km, the sampling period is 28 days and the sampling interval is 5s. This scheme can finally restore 335th order lunar gravitational field with a spatial resolution of 14km. The accumulative errors of gravity anomaly and lunar geoid are 1.42mGal and 6.77cm respectively at 250th order. In the fourth part, the satellite orbit and gradient Zhang Liang Vzz data are simulated and calculated with the reference of the optimal scheme. The preconditioned conjugate gradient method is used to recover the 100th order lunar gravitational field. The feasibility of recovering the lunar gravitational field by time domain method is verified.
【学位授予单位】:华中科技大学
【学位级别】:硕士
【学位授予年份】:2013
【分类号】:P184
【参考文献】
相关期刊论文 前7条
1 邹正波;罗志才;邢乐林;吴云龙;李辉;;卫星重力梯度恢复地球重力场的时域法研究[J];大地测量与地球动力学;2007年03期
2 蔡林;周泽兵;祝竺;高防;许厚泽;;卫星重力梯度恢复地球重力场的频谱分析[J];地球物理学报;2012年05期
3 欧阳自远;我国月球探测的总体科学目标与发展战略[J];地球科学进展;2004年03期
4 郑永春;;“月女神”探测器揭开日本月球探测的新篇章[J];国际太空;2007年11期
5 祝竺;周泽兵;;用于卫星重力梯度测量的加速度计性能参数分析[J];大地测量与地球动力学;2012年05期
6 士元;;日本“月亮女神”空间探测器9月奔月[J];数字通信世界;2007年11期
7 刘睿;周军;刘莹莹;;高阶次月球重力场模型截断下的低轨环月卫星轨道受摄分析[J];宇航学报;2009年02期
相关博士学位论文 前1条
1 钟波;基于GOCE卫星重力测量技术确定地球重力场的研究[D];武汉大学;2010年
本文编号:2190063
本文链接:https://www.wllwen.com/kejilunwen/tianwen/2190063.html